Skip to main content
Log in

Effects of visual feedback absence on force control during isometric contraction

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to evaluate the force control in the complete absence of visual feedback and the effect of repeated contractions without visual feedback.

Methods

Twelve physically active males (age 23 ± 1 years; stature 1.74 ± 0.07 m; body mass 71 ± 6 kg) performed isometric tasks at 20, 40 and 60 % maximal voluntary contraction (MVC) for 20 s. For each intensity, a trial with force visual feedback (FB) was followed by 3 trials without FB (noFB-1, noFB-2, noFB-3). During contraction, force and surface electromyogram (EMG) from the vastus lateralis muscle were recorded. From force signal, the coefficient of variation (CV, force stability index), the distance of force from target (ΔF, force accuracy index) and the time within the target (t-target) were determined. From EMG signal, the root mean square (RMS) and mean frequency (MF) were calculated.

Results

MVC was 679.14 ± 38.22 N. In noFB-1, CV was similar to FB, ΔF was higher and t-target lower (P < 0.05) than in FB. EMG-RMS in noFB-1 was lower than in FB at 40 and 60 %MVC (P < 0.05). A decrease in ΔF between noFB-1 and noFB-3 (P < 0.05) and an increase in t-target from noFB-1 to noFB-3 (P < 0.05) occurred at 20 % MVC. A difference in EMG-RMS among noFB conditions was retrieved only at 60 % MVC (P < 0.05).

Conclusions

These findings suggest that the complete absence of visual feedback decreased force accuracy but did not affect force stability. Moreover, the repetition of noFB trials improved force accuracy at low exercise intensity, suggesting that real-time visual information could be obviated by other feedbacks for force control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CV:

Coefficient of variation

EMG:

Electromyographic signal

F:

Mean force

FB:

With visual feedback

MF:

Mean frequency

MVC:

Maximal voluntary contraction

noFB:

Without any form of visual feedback

RMS:

Root mean square

SD:

Standard deviation

t-target:

Time during which force was maintained within the target

ΔF:

Distance of the force signal from the required target

References

  • Alkadhi H, Crelier GR, Boendermaker SH, Golay X, Hepp-Reymond MC, Kollias SS (2002) Reproducibility of primary motor cortex somatotopy under controlled conditions. AJNR Am J Neuroradiol 23(9):1524–1532

    PubMed  Google Scholar 

  • Athreya DN, Van Orden G, Riley MA (2012) Feedback about isometric force production yields more random variations. Neurosci Lett 513(1):37–41

    Article  CAS  PubMed  Google Scholar 

  • Baweja HS, Patel BK, Martinkewiz JD, Vu J, Christou EA (2009) Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions. Exp Brain Res 197(1):35–47

    Article  PubMed Central  PubMed  Google Scholar 

  • Christou EA (2005) Visual feedback attenuates force fluctuations induced by a stressor. Med Sci Sports Exerc 37(12):2126–2133

    Article  PubMed  Google Scholar 

  • Christou EA, Jakobi JM, Critchlow A, Fleshner M, Enoka RM (2004) The 1- to 2-Hz oscillations in muscle force are exacerbated by stress, especially in older adults. J Appl Physiol 97(1):225–235

    Article  PubMed  Google Scholar 

  • Dimitriou M, Edin BB (2010) Human muscle spindles act as forward sensory models. Curr Biol 20(19):1763–1767

    Article  CAS  PubMed  Google Scholar 

  • Enoka RM, Burnett RA, Graves AE, Kornatz KW, Laidlaw DH (1999) Task- and age-dependent variations in steadiness. Prog Brain Res 123:389–395

    Article  CAS  PubMed  Google Scholar 

  • Esposito F, Ce E, Rampichini S, Veicsteinas A (2009) Acute passive stretching in a previously fatigued muscle: electrical and mechanical response during tetanic stimulation. J Sports Sci 27(12):1347–1357

    Article  PubMed  Google Scholar 

  • Flanders M (2005) Functional somatotopy in sensorimotor cortex. Neuroreport 16(4):313–316

    Article  PubMed  Google Scholar 

  • Franklin DW, So U, Burdet E, Kawato M (2007) Visual feedback is not necessary for the learning of novel dynamics. PLoS One 2(12):e1336

    Article  PubMed Central  PubMed  Google Scholar 

  • Freund HJ (1983) Motor unit and muscle activity in voluntary motor control. Physiol Rev 63(2):387–436

    CAS  PubMed  Google Scholar 

  • Glickstein M (2000) How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci 23(12):613–617

    Article  CAS  PubMed  Google Scholar 

  • Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13(2):55–73

    Article  CAS  PubMed  Google Scholar 

  • Hamilton AF, Jones KE, Wolpert DM (2004) The scaling of motor noise with muscle strength and motor unit number in humans. Exp Brain Res 157(4):417–430

    Article  PubMed  Google Scholar 

  • Harbst KB, Lazarus JAC, Whitall J (2000) Accuracy of dynamic isometric force production: the influence of age and bimanual activation patterns. Mot Control 4(2):232–256

    Google Scholar 

  • Hu X, Loncharich M, Newell KM (2011) Visual information interacts with neuromuscular factors in the coordination of bimanual isometric force. Exp Brain Res 209(1):129–138

    Article  PubMed  Google Scholar 

  • Jackson AW, Ludtke AW, Martin SB, Koziris LP, Dishman RK (2006) Perceived submaximal force production in young adults. Res Q Exerc Sport 77(1):50–57

    Article  PubMed  Google Scholar 

  • Janczyk M, Skirde S, Weigelt M, Kunde W (2009) Visual and tactile action effects determine bimanual coordination performance. Hum Mov Sci 28(4):437–449

    Article  PubMed  Google Scholar 

  • Kennedy DM, Christou EA (2011) Greater amount of visual information exacerbates force control in older adults during constant isometric contractions. Exp Brain Res 213(4):351–361

    Article  PubMed Central  PubMed  Google Scholar 

  • Krogh-Lund C, Jorgensen K (1993) Myo-electric fatigue manifestations revisited: power spectrum, conduction velocity, and amplitude of human elbow flexor muscles during isolated and repetitive endurance contractions at 30 % maximal voluntary contraction. Eur J Appl Physiol Occup Physiol 66(2):161–173

    Article  CAS  PubMed  Google Scholar 

  • Laming AC, Martin FJ (1997) Right problem, wrong solution. Aust N Z J Ophthalmol 25(1):5–6

    CAS  PubMed  Google Scholar 

  • Latash ML, Scholz JF, Danion F, Schoner G (2001) Structure of motor variability in marginally redundant multifinger force production tasks. Exp Brain Res 141(2):153–165

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Keller EL (2008) Neural activity in the frontal eye fields modulated by the number of alternatives in target choice. J Neurosci 28(9):2242–2251

    Article  CAS  PubMed  Google Scholar 

  • Lin SI, Yang WC (2011) Effect of plantar desensitization on postural adjustments prior to step initiation. Gait Posture 34(4):451–456

    Article  CAS  PubMed  Google Scholar 

  • Madeleine P, Jorgensen LV, Sogaard K, Arendt-Nielsen L, Sjogaard G (2002) Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode. Eur J Appl Physiol 87(1):28–37

    Article  PubMed  Google Scholar 

  • Miall RC, Weir DJ, Stein JF (1985) Visuomotor tracking with delayed visual feedback. Neuroscience 16(3):511–520

    Article  CAS  PubMed  Google Scholar 

  • Miall RC, Weir DJ, Stein JF (1993) Intermittency in human manual tracking tasks. J Mot Behav 25(1):53–63

    Article  CAS  PubMed  Google Scholar 

  • Miall RC, Haggard PN, Cole JD (1995) Evidence of a limited visuo-motor memory used in programming wrist movements. Exp Brain Res 107(2):267–280

    Article  CAS  PubMed  Google Scholar 

  • Milner AD, Goodale MA (1993) Visual pathways to perception and action. Prog Brain Res 95:317–337

    Article  CAS  PubMed  Google Scholar 

  • Moritani T, Muramatsu S, Muro M (1987) Activity of motor units during concentric and eccentric contractions. Am J Phys Med 66(6):338–350

    CAS  PubMed  Google Scholar 

  • Newell KM, Broderick MP, Deutsch KM, Slifkin AB (2003) Task goals and change in dynamical degrees of freedom with motor learning. J Exp Psychol Hum Percept Perform 29(2):379–387

    Article  PubMed  Google Scholar 

  • Nowak DA, Glasauer S, Hermsdorfer J (2003) Grip force efficiency in long-term deprivation of somatosensory feedback. Neuroreport 14(14):1803–1807

    Article  PubMed  Google Scholar 

  • Ofori E, Samson JM, Sosnoff JJ (2010) Age-related differences in force variability and visual display. Exp Brain Res 203(2):299–306

    Article  PubMed  Google Scholar 

  • Prodoehl J, Vaillancourt DE (2010) Effects of visual gain on force control at the elbow and ankle. Exp Brain Res 200(1):67–79

    Article  PubMed Central  PubMed  Google Scholar 

  • Prodoehl J, Yu H, Wasson P, Corcos DM, Vaillancourt DE (2008) Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. J Neurophysiol 99(6):3042–3051

    Article  PubMed  Google Scholar 

  • Rainoldi A, Galardi G, Maderna L, Comi G, Lo Conte L, Merletti R (1999) Repeatability of surface EMG variables during voluntary isometric contractions of the biceps brachii muscle. J Electromyogr Kinesiol 9(2):105–119

    Article  CAS  PubMed  Google Scholar 

  • Sale DG (1987) Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev 15:95–151

    CAS  PubMed  Google Scholar 

  • Sayenko DG, Masani K, Vette AH, Alekhina MI, Popovic MR, Nakazawa K (2012) Effects of balance training with visual feedback during mechanically unperturbed standing on postural corrective responses. Gait Posture 35(2):339–344

    Article  PubMed  Google Scholar 

  • Scheidt RA, Conditt MA, Secco EL, Mussa-Ivaldi FA (2005) Interaction of visual and proprioceptive feedback during adaptation of human reaching movements. J Neurophysiol 93(6):3200–3213

    Article  PubMed  Google Scholar 

  • Schiffman JM, Luchies CW, Richards LG, Zebas CJ (2002) The effects of age and feedback on isometric knee extensor force control abilities. Clin Biomech (Bristol, Avon) 17(6):486–493

    Article  Google Scholar 

  • Schiffman JM, Luchies CW, Piscitelle L, Hasselquist L, Gregorczyk KN (2006) Discrete bandwidth visual feedback increases structure of output as compared to continuous visual feedback in isometric force control tasks. Clin Biomech (Bristol, Avon) 21(10):1042–1050

    Article  Google Scholar 

  • Sherwood DE (1988) Effect of bandwidth knowledge of results on movement consistency. Percept Mot Skills 66(2):535–542

    Article  CAS  PubMed  Google Scholar 

  • Shinohara M, Yoshitake Y, Kouzaki M, Fukunaga T (2006) The medial gastrocnemius muscle attenuates force fluctuations during plantar flexion. Exp Brain Res 169(1):15–23

    Article  PubMed  Google Scholar 

  • Shinohara M, Yoshitake Y, Kouzaki M (2009) Alterations in synergistic muscle activation impact fluctuations in net force. Med Sci Sports Exerc 41(1):191–197

    Article  PubMed  Google Scholar 

  • Sjogaard G, Jorgensen LV, Ekner D, Sogaard K (2000) Muscle involvement during intermittent contraction patterns with different target force feedback modes. Clin Biomech (Bristol, Avon) 15(1 Suppl):S25–S29

    Article  Google Scholar 

  • Slifkin AB, Vaillancourt DE, Newell KM (2000) Intermittency in the control of continuous force production. J Neurophysiol 84(4):1708–1718

    CAS  PubMed  Google Scholar 

  • Sogaard K, Blangsted AK, Jorgensen LV, Madeleine P, Sjogaard G (2003) Evidence of long term muscle fatigue following prolonged intermittent contractions based on mechano- and electromyograms. J Electromyogr Kinesiol 13(5):441–450

    Article  CAS  PubMed  Google Scholar 

  • Sosnoff JJ, Newell KM (2005) Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production. Percept Psychophys 67(2):335–344

    Article  PubMed  Google Scholar 

  • Sosnoff JJ, Newell KM (2006) Information processing limitations with aging in the visual scaling of isometric force. Exp Brain Res 170(3):423–432

    Article  PubMed  Google Scholar 

  • Sosnoff JJ, Newell KM (2007) Are visual feedback delays responsible for aging-related increases in force variability? Exp Aging Res 33(4):399–415

    Article  PubMed  Google Scholar 

  • Sosnoff JJ, Valantine AD, Newell KM (2006) Independence between the amount and structure of variability at low force levels. Neurosci Lett 392(3):165–169

    Article  CAS  PubMed  Google Scholar 

  • Svendsen JH, Samani A, Mayntzhusen K, Madeleine P (2011) Muscle coordination and force variability during static and dynamic tracking tasks. Hum Mov Sci 30(6):1039–1051

    Article  PubMed  Google Scholar 

  • Tracy BL (2007a) Force control is impaired in the ankle plantarflexors of elderly adults. Eur J Appl Physiol 101(5):629–636

    Article  PubMed  Google Scholar 

  • Tracy BL (2007b) Visuomotor contribution to force variability in the plantarflexor and dorsiflexor muscles. Hum Mov Sci 26(6):796–807

    Article  PubMed Central  PubMed  Google Scholar 

  • Tracy BL, Dinenno DV, Jorgensen B, Welsh SJ (2007) Aging, visuomotor correction, and force fluctuations in large muscles. Med Sci Sports Exerc 39(3):469–479

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Russell DM (2002) Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res 145(3):275–285

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Larsson L, Newell KM (2003a) Effects of aging on force variability, single motor unit discharge patterns, and the structure of 10, 20, and 40 Hz EMG activity. Neurobiol Aging 24(1):25–35

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Thulborn KR, Corcos DM (2003b) Neural basis for the processes that underlie visually guided and internally guided force control in humans. J Neurophysiol 90(5):3330–3340

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Mayka MA, Corcos DM (2006) Intermittent visuomotor processing in the human cerebellum, parietal cortex, and premotor cortex. J Neurophysiol 95(2):922–931

    Article  PubMed Central  PubMed  Google Scholar 

  • Welsh SJ, Dinenno DV, Tracy BL (2007) Variability of quadriceps femoris motor neuron discharge and muscle force in human aging. Exp Brain Res 179(2):219–233

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all the participants who volunteered for this study for their patience and committed involvement. The study was supported by a PUR grant from University of Milan to Prof. Fabio Esposito.

Conflict of interest

No conflicts of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloisa Limonta.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limonta, E., Rampichini, S., Cè, E. et al. Effects of visual feedback absence on force control during isometric contraction. Eur J Appl Physiol 115, 507–519 (2015). https://doi.org/10.1007/s00421-014-3036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3036-1

Keywords

Navigation