Skip to main content
Log in

Increase in vastus lateralis aponeurosis width induced by resistance training: implications for a hypertrophic model of pennate muscle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to ascertain whether training-induced muscle hypertrophy is accompanied by an increase in the aponeurosis width, and to infer its impact on the training-induced increase in the pennation angle.

Methods

Eleven young men completed a resistance training program of unilateral knee extensions for 12 weeks. Before and after training, anatomical cross-sectional area (ACSA) of the vastus lateralis and its distal aponeurosis width in the transverse plane were measured with magnetic resonance imaging. The pennation angle and fascicle length were also determined with ultrasonography at the midbelly of the muscle. The effect of change in aponeurosis width on the magnitude of training-induced increase in pennation angle was estimated by using a parallelepipedon model.

Results

After the training, there were significant increases in ACSA (10.7 ± 7.6 %), pennation angle (10.8 ± 7.3 %) and aponeurosis width (1.9 ± 3.1 %), whereas no significant change was found in the fascicle length. The model simulation shows that the increase in aponeurosis width by 1.9 % reduces the magnitude of increase in pennation angle by only 0.4°.

Conclusions

These results indicate that (1) the aponeurosis width of the vastus lateralis increases after 12 weeks of resistance training and (2) the increase in the aponeurosis width accompanying muscle hypertrophy by the amount of ~10 % does not substantially affect the increase in pennation angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACSA:

Anatomical cross-sectional area

CV:

Coefficient of variation

ICC:

Intracrass correlation coefficient

MR:

Magnetic resonance

RM:

Repetition maximum

VL:

Vastus lateralis

References

  • Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534:613–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abe T, Brechue WF, Fujita S, Brown JB (1998) Gender differences in FFM accumulation and architectural characteristics of muscle. Med Sci Sports Exerc 30:1066–1070

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Brown JB, Brechue WF (1999) Architectural characteristics of muscle in black and white college football players. Med Sci Sports Exerc 31:1448–1452

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Kumagai K, Bemben MG (2012) Muscle aponeurosis area in hypertrophied and normal muscle. J Trainol 1:23–27

    Google Scholar 

  • Alegre LM, Jiménez F, Gonzalo-Orden JM, Martín-Acero R, Aguado X (2006) Effects of dynamic resistance training on fascicle length and isometric strength. J Sports Sci 24:501–508

    Article  PubMed  Google Scholar 

  • Alexander RM, Vernon A (1975) The dimensions of knee and ankle muscles and the forces they exert. J Hum Mov Stud 1:115–123

    Google Scholar 

  • Berg HE, Tedner B, Tesch PA (1993) Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol Scand 148:379–385

    Article  CAS  PubMed  Google Scholar 

  • Blazevich AJ, Gill ND, Bronks R, Newton RU (2003) Training-specific muscle architecture adaptation after 5-wk training in athletes. Med Sci Sports Exerc 35:2013–2022

    Article  PubMed  Google Scholar 

  • Blazevich AJ, Cannavan D, Coleman DR, Horne S (2007) Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol 103:1565–1575

    Article  PubMed  Google Scholar 

  • Bodine SC, Roy RR, Meadows DA, Zernicke RF, Sacks RD, Fournier M, Edgerton VR (1982) Architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus. J Neurophysiol 48:192–201

    CAS  PubMed  Google Scholar 

  • Brechue WF, Abe T (2002) The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur J Appl Physiol 86:327–336

    Article  PubMed  Google Scholar 

  • Ema R, Wakahara T, Miyamoto N, Kanehisa H, Kawakami Y (2013) Inhomogeneous architectural changes of the quadriceps femoris induced by resistance training. Eur J Appl Physiol 113:2691–2703

    Article  PubMed  Google Scholar 

  • Erskine RM, Jones DA, Williams AG, Stewart CE, Degens H (2010a) Inter-individual variability in the adaptation of human muscle specific tension to progressive resistance training. Eur J Appl Physiol 110:1117–1125

    Article  PubMed  Google Scholar 

  • Erskine RM, Jones DA, Williams AG, Stewart CE, Degens H (2010b) Resistance training increases in vivo quadriceps femoris muscle specific tension in young men. Acta Physiol 199:83–89

    Article  CAS  Google Scholar 

  • Fukunaga T, Ichinose Y, Ito M, Kawakami Y, Fukashiro S (1997) Determination of fascicle length and pennation in a contracting human muscle in vivo. J Appl Physiol 82:354–358

    CAS  PubMed  Google Scholar 

  • Gans C, Bock WJ (1965) The functional significance of muscle architecture—a theoretical analysis. Ergeb Anat Entwicklungsgesch 38:115–142

    CAS  PubMed  Google Scholar 

  • Gans C, Gaunt AS (1991) Muscle architecture in relation to function. J Biomech 24:53–65

    Article  PubMed  Google Scholar 

  • Gollnick PD, Timson BF, Moore RL, Riedy M (1981) Muscular enlargement and number of fibers in skeletal muscles of rats. J Appl Physiol 50:936–943

    CAS  PubMed  Google Scholar 

  • Hansen P, Aagaard P, Kjaer M, Larsson B, Magnusson SP (2003) Effect of habitual running on human Achilles tendon load-deformation properties and cross-sectional area. J Appl Physiol 95:2375–2380

    CAS  PubMed  Google Scholar 

  • Henriksson-Larsen K, Wretling ML, Lorentzon R, Oberg L (1992) Do muscle fibre size and fibre angulation correlate in pennated human muscles? Eur J Appl Physiol Occup Physiol 64:68–72

    Article  CAS  PubMed  Google Scholar 

  • Iwanuma S, Akagi R, Kurihara T, Ikegawa S, Kanehisa H, Fukunaga T, Kawakami Y (2011) Longitudinal and transverse deformation of human Achilles tendon induced by isometric plantar flexion at different intensities. J Appl Physiol 110:1615–1621

    Article  PubMed  Google Scholar 

  • Kanehisa H, Nagareda H, Kawakami Y, Akima H, Masani K, Kouzaki M, Fukunaga T (2002) Effects of equivolume isometric training programs comprising medium or high resistance on muscle size and strength. Eur J Appl Physiol 87:112–119

    Article  CAS  PubMed  Google Scholar 

  • Kardel T (1990) Niels Stensen’s geometrical theory of muscle contraction (1667): a reappraisal. J Biomech 23:953–965

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y (2005) The effects of strength training on muscle architecture in humans. Int J Sport Health Sci 3:208–217

    Article  Google Scholar 

  • Kawakami Y, Abe T, Fukunaga T (1993) Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol 74:2740–2744

    CAS  PubMed  Google Scholar 

  • Kawakami Y, Abe T, Kuno SY, Fukunaga T (1995) Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol 72:37–43

    Article  CAS  PubMed  Google Scholar 

  • Kearns CF, Abe T, Brechue WF (2000) Muscle enlargement in sumo wrestlers includes increased muscle fascicle length. Eur J Appl Physiol 83:289–296

    Article  CAS  PubMed  Google Scholar 

  • Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard MR, Magnusson SP (2009) From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports 19:500–510

    Article  CAS  PubMed  Google Scholar 

  • Kongsgaard M, Reitelseder S, Pedersen TG, Holm L, Aagaard P, Kjaer M, Magnusson SP (2007) Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol 191:111–121

    Article  CAS  Google Scholar 

  • Kubo K, Kanehisa H, Fukunaga T (2002) Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. J Physiol 538:219–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubo K, Komuro T, Ishiguro N, Tsunoda N, Sato Y, Ishii N, Kanehisa H, Fukunaga T (2006a) Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech 22:112–119

    PubMed  Google Scholar 

  • Kubo K, Yata H, Kanehisa H, Fukunaga T (2006b) Effects of isometric squat training on the tendon stiffness and jump performance. Eur J Appl Physiol 96:305–314

    Article  PubMed  Google Scholar 

  • Kubo K, Morimoto M, Komuro T, Yata H, Tsunoda N, Kanehisa H, Fukunaga T (2007) Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med Sci Sports Exerc 39:1801–1810

    Article  PubMed  Google Scholar 

  • Kubo K, Ikebukuro T, Yaeshima K, Yata H, Tsunoda N, Kanehisa H (2009) Effects of static and dynamic training on the stiffness and blood volume of tendon in vivo. J Appl Physiol 106:412–417

    Article  PubMed  Google Scholar 

  • Kubo K, Ikebukuro T, Yata H, Tsunoda N, Kanehisa H (2010) Time course of changes in muscle and tendon properties during strength training and detraining. J Strength Cond Res 24:322–331

    Article  PubMed  Google Scholar 

  • Maganaris CN, Kawakami Y, Fukunaga T (2001) Changes in aponeurotic dimensions upon muscle shortening: in vivo observations in man. J Anat 199:449–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maxwell LC, Faulkner JA, Hyatt GJ (1974) Estimation of number of fibers in guinea pig skeletal muscles. J Appl Physiol 37:259–264

    CAS  PubMed  Google Scholar 

  • Morse CI, Degens H, Jones DA (2007) The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol 100:267–274

    Article  PubMed  Google Scholar 

  • Müller W (1975) Isometric training of young rats–effects upon hind limb muscles. Histochemical, morphometric, and electron microscopic studies. Cell Tissue Res 161:225–237

    Article  PubMed  Google Scholar 

  • Muramatsu T, Muraoka T, Kawakami Y, Shibayama A, Fukunaga T (2002) In vivo determination of fascicle curvature in contracting human skeletal muscles. J Appl Physiol 92:129–134

    Article  PubMed  Google Scholar 

  • Muraoka T, Muramatsu T, Kanehisa H, Fukunaga T (2003) Transverse strain of aponeurosis in human tibialis anterior muscle at rest and during contraction at different joint angles. J Appl Biomech 19:39–48

    Google Scholar 

  • Noorkoiv M, Nosaka K, Blazevich AJ (2014) Neuromuscular adaptations associated with knee joint angle-specific force change. Med Sci Sports Exerc 46:1525–1537

    Article  PubMed  Google Scholar 

  • Powell PL, Roy RR, Kanim P, Bello MA, Edgerton VR (1984) Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J Appl Physiol 57:1715–1721

    CAS  PubMed  Google Scholar 

  • Reeves ND, Maganaris CN, Narici MV (2003) Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol 548:971–981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reeves ND, Narici MV, Maganaris CN (2004) In vivo human muscle structure and function: adaptations to resistance training in old age. Exp Physiol 89:675–689

    Article  CAS  PubMed  Google Scholar 

  • Seynnes OR, de Boer M, Narici MV (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 102:368–373

    Article  CAS  PubMed  Google Scholar 

  • Seynnes OR, Erskine RM, Maganaris CN, Longo S, Simoneau EM, Grosset JF, Narici MV (2009) Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. J Appl Physiol 107:523–530

    Article  CAS  PubMed  Google Scholar 

  • Spector SA, Gardiner PF, Zernicke RF, Roy RR, Edgerton VR (1980) Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. J Neurophysiol 44:951–960

    CAS  PubMed  Google Scholar 

  • Spoor CW, van Leeuwen JL, van der Meulen WJ, Huson A (1991) Active force-length relationship of human lower-leg muscles estimated from morphological data: a comparison of geometric muscle models. Eur J Morphol 29:137–160

    CAS  PubMed  Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res 179:275–283

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Young Scientists (B, 23700745) from the Japan Society for Promotion of Science.

Conflict of interest

None of the authors have a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Wakahara.

Additional information

Communicated by Olivier Seynnes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakahara, T., Ema, R., Miyamoto, N. et al. Increase in vastus lateralis aponeurosis width induced by resistance training: implications for a hypertrophic model of pennate muscle. Eur J Appl Physiol 115, 309–316 (2015). https://doi.org/10.1007/s00421-014-3012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3012-9

Keywords

Navigation