Skip to main content
Log in

Greater autonomic modulation during post-exercise hypotension following high-intensity interval exercise in endurance-trained men and women

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

An acute reduction in blood pressure observed after a single bout of exercise is termed post-exercise hypotension (PEH). In contrast to moderate intensity aerobic exercise, little is known about the PEH response following high-intensity interval exercise. The present purpose is to assess how sex and training status impact PEH following high-intensity interval exercise.

Methods

Cardiac volumes and function via echocardiography were measured in 40 normotensive, endurance-trained (ET) and normally active (NA) men and women (Age ± SD = 30.5 ± 5.7) following high-intensity interval cycle exercise. Continuous measurements of ECG and beat-by-beat blood pressure were collected before and 30 min post-exercise for determination of cardiovagal baroreflex function (BRS and αLF), spectral analysis of heart rate and systolic blood pressure (SBP LF).

Results

Post-exercise systolic BP was significantly reduced from baseline, occurring to a greater degree in ET compared with NA (−12.9 vs. −5.3 mmHg, P = 0.008), while mean arterial pressure was similarly reduced in all groups (−4.6 mmHg, P = 0.003). Despite reduced SVI and TPRI, CI was increased post-exercise (P < 0.01). ET experienced a greater decrease in αLF (P = 0.037) and increase in SBP LF (P = 0.017) than NA. Lean body mass was a significant predictor of change in SBP LF (Std. β = 0.735, P = 0.008).

Conclusions

These results characterize greater depressions in cardiovagal baroreflex function, and increased sympathetic activity, following vigorous exercise in endurance-trained individuals compared with normally active participants. This heightened sympathovagal balance after high-intensity exercise may be a compensatory mechanism in response to greater peripheral blood flow demands following vigorous exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

αLF:

Alpha low frequency

ANOVA:

Analysis of variance

BRS:

Baroreceptor sensitivity

BSA:

Body surface area

CI:

Cardiac index

CO:

Cardiac output

DBP:

Diastolic blood pressure

DXA:

Dual-energy X-ray absorptiometry

ECG:

Electrocardiogram

EDV:

End-diastolic volume

EDVI:

End-diastolic volume index

EF:

Ejection fraction

ESV:

End-systolic volume

ESVI:

End-systolic volume index

ET:

Endurance-trained

FS:

Fractional shortening

HR:

Heart rate

IVSTD:

Intra-ventricular septal wall thickness (diastole)

LBMI:

Lean body mass index

RRI LF/HF:

Ratio of high frequency to low frequency of heart rate variability

LV:

Left ventricular

LVIDD:

Left ventricular internal dimension (diastole)

MAP:

Mean arterial pressure

NA:

Normally active

PEH:

Post-exercise hypotension

PWTD:

Posterior wall thickness (diastole)

SBP:

Systolic blood pressure

SBP:

LF Low frequency of systolic blood pressure

SV:

Stroke volume

SVI:

Stroke volume index

TPR:

Total peripheral resistance

TPRI:

Total peripheral resistance index

VO2max :

Maximal oxygen consumption

WS:

Wall Stress

References

  • Aubert AE, Seps B et al (2003) Heart rate variability in athletes. Sports Med 33:889–919

    Article  PubMed  Google Scholar 

  • Bada AA, Svendsen JH et al (2012) Peripheral vasodilatation determines cardiac output in exercising humans: insight from atrial pacing. J Physiol 590:2051–2060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boutcher SH (2011) High-intensity intermittent exercise and fat loss. J Obes 2011:868305

    Article  PubMed Central  PubMed  Google Scholar 

  • Burgomaster KA, Howarth KR et al (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586:151–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charkoudian N, Halliwill JR et al (2003) Influences of hydration on post-exercise cardiovascular control in humans. J Physiol 552:635–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CY, Bonham AC (2010) Postexercise hypotension: central mechanisms. Exerc Sport Sci Rev 38:122–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooke WH, Rickards CA et al (2008) Autonomic compensation to simulated hemorrhage monitored with heart period variability. Crit Care Med 36:1892–1899

    Article  PubMed  Google Scholar 

  • Cote AT, Bredin SS et al (2013) Left ventricular mechanics and arterial-ventricular coupling following high-intensity interval exercise. J Appl Physiol (1985) 115:1705–1713

    Article  Google Scholar 

  • Devereux RB, Alonso DR et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  CAS  PubMed  Google Scholar 

  • Dujic Z, Ivancev V et al (2006) Postexercise hypotension in moderately trained athletes after maximal exercise. Med Sci Sports Exerc 38:318–322

    Article  PubMed  Google Scholar 

  • Eicher JD, Maresh CM et al (2010) The additive blood pressure lowering effects of exercise intensity on post-exercise hypotension. Am Heart J 160:513–520

    Article  PubMed  Google Scholar 

  • Eisenach JH, Gullixson LR et al (2012) Sex differences in salt sensitivity to nitric oxide dependent vasodilation in healthy young adults. J Appl Physiol (1985) 112:1049–1053

    Article  CAS  Google Scholar 

  • Fritzsche RG, Coyle EF (2000) Cutaneous blood flow during exercise is higher in endurance-trained humans. J Appl Physiol 88:738–744

    CAS  PubMed  Google Scholar 

  • Furlan R, Porta A et al (2000) Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation 101:886–892

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Alonso J, Mortensen SP et al (2008) Haemodynamic responses to exercise, ATP infusion and thigh compression in humans: insight into the role of muscle mechanisms on cardiovascular function. J Physiol 586:2405–2417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodman JM, Busato GM et al (2009) Left ventricular contractile function is preserved during prolonged exercise in middle-aged men. J Appl Physiol 106:494–499

    Article  PubMed  Google Scholar 

  • Goulopoulou S, Fernhall B et al (2009) Hemodynamic responses and linear and non-linear dynamics of cardiovascular autonomic regulation following supramaximal exercise. Eur J Appl Physiol 105:525–531

    Article  PubMed  Google Scholar 

  • Halliwill JR (2001) Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev 29:65–70

    Article  CAS  PubMed  Google Scholar 

  • Halliwill JR, Taylor JA et al (1996a) Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol 495(Pt 1):279–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halliwill JR, Taylor JA et al (1996b) Augmented baroreflex heart rate gain after moderate-intensity, dynamic exercise. Am J Physiol 270:R420–R426

    CAS  PubMed  Google Scholar 

  • Halliwill JR, Buck TM et al (2013) Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise? Exp Physiol 98:7–18

    Article  PubMed  Google Scholar 

  • Halliwill JR, Sieck DC et al (2014) Blood pressure regulation X: what happens when the muscle pump is lost? Post-exercise hypotension and syncope. Eur J Appl Physiol 114:561–578

    Article  PubMed  Google Scholar 

  • Hautala AJ, Makikallio TH et al (2003) Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin Physiol Funct Imaging 23:215–223

    Article  PubMed  Google Scholar 

  • Jendzjowsky NG, Delorey DS (2013) Short-term exercise training enhances functional sympatholysis through a nitric oxide-dependent mechanism. J Physiol 591:1535–1549

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones H, George K et al (2007) Is the magnitude of acute post-exercise hypotension mediated by exercise intensity or total work done? Eur J Appl Physiol 102:33–40

    Article  PubMed  Google Scholar 

  • Joyner MJ, Limberg JK (2014) Blood pressure regulation: every adaptation is an integration? Eur J Appl Physiol 114:445–450

    Article  PubMed  Google Scholar 

  • La Rovere MT, Pinna GD et al (2008) Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol 13:191–207

    Article  PubMed  Google Scholar 

  • Lacombe SP, Goodman JM et al (2011) Interval and continuous exercise elicit equivalent postexercise hypotension in prehypertensive men, despite differences in regulation. Appl Physiol Nutr Metab 36:881–891

    Article  PubMed  Google Scholar 

  • Lakin R, Notarius C et al (2013) Effects of moderate-intensity aerobic cycling and swim exercise on post-exertional blood pressure in healthy young untrained and triathlon-trained men and women. Clin Sci (Lond) 125:543–553

    Article  Google Scholar 

  • Lang RM, Bierig M et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  • Lucini D, Furlan R et al (2004) Altered profile of baroreflex and autonomic responses to lower body negative pressure in chronic orthostatic intolerance. J Hypertens 22:1535–1542

    Article  CAS  PubMed  Google Scholar 

  • MacDonald JR (2002) Potential causes, mechanisms, and implications of post exercise hypotension. J Hum Hypertens 16:225–236

    Article  CAS  PubMed  Google Scholar 

  • Maughan RJ, Shirreffs SM et al (2007) Errors in the estimation of hydration status from changes in body mass. J Sports Sci 25:797–804

    Article  PubMed  Google Scholar 

  • McCord JL, Halliwill JR (2006) H1 and H2 receptors mediate postexercise hyperemia in sedentary and endurance exercise-trained men and women. J Appl Physiol 101:1693–1701

    Article  CAS  PubMed  Google Scholar 

  • Medbo JI, Hisdal J et al (2009) Blood flow in the brachial artery increases after intense cycling exercise. Scand J Clin Lab Invest 69:752–763

    Article  PubMed  Google Scholar 

  • Mendonca GV, Heffernan KS et al (2010) Sex differences in linear and nonlinear heart rate variability during early recovery from supramaximal exercise. Appl Physiol Nutr Metab 35:439–446

    Article  PubMed  Google Scholar 

  • Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098

    CAS  PubMed  Google Scholar 

  • Nielsen HB, Clemmesen JO et al (2002) Attenuated hepatosplanchnic uptake of lactate during intense exercise in humans. J Appl Physiol 92:1677–1683

    CAS  PubMed  Google Scholar 

  • Niewiadomski W, Gasiorowska A et al (2007) Suppression of heart rate variability after supramaximal exertion. Clin Physiol Funct Imag 27:309–319

    Article  CAS  Google Scholar 

  • Oppliger RA, Magnes SA et al (2005) Accuracy of urine specific gravity and osmolality as indicators of hydration status. Int J Sport Nutr Exerc Metab 15:236–251

    PubMed  Google Scholar 

  • Pagani M, Montano N et al (1997) Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation 95:1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Pescatello LS, Guidry MA et al (2004) Exercise intensity alters postexercise hypotension. J Hypertens 22:1881–1888

    Article  CAS  PubMed  Google Scholar 

  • Phillips AA, Bredin SS et al (2013) Aortic distensibility is reduced during intense lower body negative pressure and is related to low frequency power of systolic blood pressure. Eur J Appl Physiol 113:785–792

    Article  PubMed  Google Scholar 

  • Phillips AA, Krassioukov AV et al (2014) Increased central arterial stiffness explains baroreflex dysfunction in spinal cord injury. J Neurotrauma 31:1122–1128

    Article  PubMed  Google Scholar 

  • Piepoli M, Coats AJ et al (1993) Persistent peripheral vasodilation and sympathetic activity in hypotension after maximal exercise. J Appl Physiol 75:1807–1814

    CAS  PubMed  Google Scholar 

  • Prior BM, Lloyd PG et al (2003) Exercise-induced vascular remodeling. Exerc Sport Sci Rev 31:26–33

    Article  PubMed  Google Scholar 

  • Quinn TJ (2000) Twenty-four hour, ambulatory blood pressure responses following acute exercise: impact of exercise intensity. J Hum Hypertens 14:547–553

    Article  CAS  PubMed  Google Scholar 

  • Rakobowchuk M, Tanguay S et al (2008) Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol 295:R236–R242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raven PB, Fadel PJ et al (2006) Arterial baroreflex resetting during exercise: a current perspective. Exp Physiol 91:37–49

    Article  PubMed  Google Scholar 

  • Reichek N, Wilson J et al (1982) Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation 65:99–108

    Article  CAS  PubMed  Google Scholar 

  • Rossow L, Yan H et al (2010) Postexercise hypotension in an endurance-trained population of men and women following high-intensity interval and steady-state cycling. Am J Hypertens 23:358–367

    Article  PubMed  Google Scholar 

  • Ryan KL, Rickards CA et al (2011) Arterial pressure oscillations are not associated with muscle sympathetic nerve activity in individuals exposed to central hypovolaemia. J Physiol 589:5311–5322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott JM, Esch BT et al (2008) Post-exercise hypotension and cardiovascular responses to moderate orthostatic stress in endurance-trained males. Appl Physiol Nutr Metab 33:246–253

    Article  PubMed  Google Scholar 

  • Stohr EJ, Gonzalez-Alonso J et al (2011) Dehydration reduces left ventricular filling at rest and during exercise independent of twist mechanics. J Appl Physiol 111:891–897

    Article  PubMed  Google Scholar 

  • Thompson PD, Crouse SF et al (2001) The acute versus the chronic response to exercise. Med Sci Sports Exerc 33:S438–S445 (discussion S452–433)

    Article  CAS  PubMed  Google Scholar 

  • Warburton D, Gledhill N et al (2011) The physical activity readiness questionnaire (PAR-Q+) and electronic physical activity readiness medical examination (ePARmed-X+): summary of consensus panel recommendations. Health Fit J Can 4:26–37

    Google Scholar 

  • Willie CK, Ainslie PN et al (2013) Maintained cerebrovascular function during post-exercise hypotension. Eur J Appl Physiol 113:1597–1604

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance of Dr. Jack Taunton and GE Healthcare.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita T. Cote.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cote, A.T., Bredin, S.S.D., Phillips, A.A. et al. Greater autonomic modulation during post-exercise hypotension following high-intensity interval exercise in endurance-trained men and women. Eur J Appl Physiol 115, 81–89 (2015). https://doi.org/10.1007/s00421-014-2996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2996-5

Keywords

Navigation