Skip to main content
Log in

P2Y1 and P2Y12 receptors in hypoxia- and adenosine diphosphate-induced pulmonary vasoconstriction in vivo in the pig

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the role of P2Y1 and P2Y12 receptors in hypoxia- and adenosine diphosphate (ADP)-induced pulmonary vasoconstriction.

Methods

19 anaesthetized, mechanically ventilated pigs (31.3 ± 0.7 kg) were evaluated in normoxia and hypoxia, without (n = 6) or with P2Y1 receptor antagonist MRS2500 (n = 7) or P2Y12 receptor antagonist cangrelor (n = 6) treatment. 12 pigs (29.3 ± 0.4 kg) were evaluated before and during ADP infusion, without and with MRS2500 (n = 6) or cangrelor (n = 6) pre-treatment.

Results

Hypoxia increased (p < 0.05) mean pulmonary artery pressure (MPAP) by 14.2 ± 1.1 mmHg and pulmonary vascular resistance (PVR) by 2.7 ± 0.4 WU. Without treatment MPAP and PVR remained unaltered (p = ns) for 90 min hypoxia. During hypoxia MRS2500 decreased (p < 0.013) MPAP by 4.3 ± 1.2 mmHg within 15 min. Cangrelor decreased (p < 0.036) MPAP to be 3.3 ± 0.4 and 3.6 ± 0.6 mmHg lower than hypoxia baseline after 10 and 30 min. PVR was, however, unaltered (p = ns) by MRS2500 or cangrelor during hypoxia. ADP increased (p < 0.001) MPAP and PVR to stabilize 11.1 ± 1.3 mmHg and 2.7 ± 0.3 WU higher than baseline. MRS2500 or cangrelor pre-treatment totally abolished the sustained MPAP- and PVR-increases to ADP.

Conclusions

ADP elicits pulmonary vasoconstriction through P2Y1 and P2Y12 receptor activation. ADP is not a mandatory modulator, but may still contribute to pulmonary vascular tone during acute hypoxia. Further investigations into the mechanisms behind ADP-induced pulmonary vasoconstriction and the role of ADP as a modulator of pulmonary vascular tone during hypoxia are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AO:

Aorta

ATP:

Adenosine triphosphate

ADP:

Adenosine diphosphate

CO:

Cardiac output

CO2 :

Oxygen content

FiO2 :

Inspired oxygen fraction

Hb:

Haemoglobin concentration

HPV:

Hypoxic pulmonary vasoconstriction

HR:

Heart rate

MAP:

Mean aortic pressure

MPAP:

Mean pulmonary arterial pressure

MRAP:

Mean right atrial pressure

PA:

Pulmonary artery

PCWP:

Pulmonary capillary wedge pressure

pO2 :

Partial pressure for oxygen

PVR:

Pulmonary vascular resistance

SO2 :

Oxygen saturation

SV:

Stroke volume

SVR:

Systemic vascular resistance

WU:

Wood units

References

  • Aaronson PI, Robertson TP, Ward JP (2002) Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol 132(1):107–120

    Article  CAS  PubMed  Google Scholar 

  • Alexander F, Manny J, Lelcuk S, Shepro D, Hechtman HB (1986) Cyclo-oxygenase products mediate hypoxic pulmonary hypertension. J Pediatr Surg 21(12):1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Bärtsch P, Gibbs JS (2007) Effect of altitude on the heart and the lungs. Circulation 116(19):2191–2202

    Article  PubMed  Google Scholar 

  • Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64(12):1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Buvinic S, Briones R, Huidobro-Toro JP (2002) P2Y1 and P2Y2 receptors are coupled to the NO/cGMP pathway to vasodilate the rat arterial mesenteric bed. Br J Pharmacol 136(6):847–856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buvinic S, Poblete MI, Donoso MV, Delpiano AM, Briones R, Miranda R, Huidobro-Toro JP (2006) P2Y1 and P2Y2 receptor distribution varies along the human placental vascular tree: role of nucleotides in vascular tone regulation. J Physiol 573(2):427–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cattaneo M, Lecchi A, Ohno M, Joshi BV, Besada P, Tchilibon S, Lombardi R, Bischofberger N, Harden TK, Jacobson KA (2004) Antiaggregatory activity in human platelets of potent antagonists of the P2Y1 receptor. Biochem Pharmacol 68(10):1995–2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deem S, Swenson ER, Alberts MK, Hedges RG, Bishop MJ (1998) Red-blood-cell augmentation of hypoxic pulmonary vasoconstriction: hematocrit dependence and the importance of nitric oxide. Am J Respir Crit Care Med 157(4 Pt 1):1181–1186

    CAS  PubMed  Google Scholar 

  • Ellsworth ML (2000) The red blood cell as an oxygen sensor: what is the evidence? Acta Physiol Scand 168(4):551–559

    Article  CAS  PubMed  Google Scholar 

  • Geiger R, Treml B, Kleinsasser A, Neu N, Fischer V, Stein JI, Loeckinger A (2008) Intravenous tezosentan and vardenafil attenuate acute hypoxic pulmonary hypertension. High Alt Med Biol 9(3):223–227

    Article  CAS  PubMed  Google Scholar 

  • Glasser SA, Domino KB, Lindgren L, Parcella P, Marshall C, Marshall BE (1983) Pulmonary blood pressure and flow during atelectasis in the dog. Anesthesiology 58(3):225–231

    Article  CAS  PubMed  Google Scholar 

  • Guns P, Korda A, Crauwels HM, van Assche T, Robaye B, Boeynaems J, Bult H (2005) Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta. Br J Pharmacol 146(2):288–295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hechler B, Nonne C, Roh EJ, Cattaneo M, Cazenave J-P, Lanza F, Jacobson KA, Gachet C (2006) MRS2500 [2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate], a potent, selective, and stable antagonist of the platelet P2Y1 receptor with strong antithrombotic activity in mice. J Pharmacol Exp Ther 316(2):556–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hedelin P, Kylhammar D, Rådegran G (2012) Dual endothelin receptor blockade with tezosentan markedly attenuates hypoxia-induced pulmonary vasoconstriction in a porcine model. Acta Physiol 204(3):419–434

    Article  CAS  Google Scholar 

  • Houston D, Ohno M, Nicholas RA, Jacobson KA, Harden TK (2006) [32P]2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate ([32P]MRS2500), a novel radioligand for quantification of native P2Y1 receptors. Br J Pharmacol 147(5):459–467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huez S, Faoro V, Vachiéry J-L, Unger P, Martinot J-B, Naeije R (2007) Images in cardiovascular medicine. High-altitude-induced right-heart failure. Circulation 115(9):e308–e309

    Article  PubMed  Google Scholar 

  • Hyman AL, Woolverton WC, Pennington DG, Jaques WE (1971) Pulmonary vascular responses to adenosine diphosphate. J Pharmacol Exp Ther 178(3):549–561

    CAS  PubMed  Google Scholar 

  • Kahner BN, Shankar H, Murugappan S, Prasad GL, Kunapuli SP (2006) Nucleotide receptor signaling in platelets. J Thromb Haemost 4(11):2317–2326

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Ohno M, Xu B, Kim HO, Choi Y, Ji XD, Maddileti S, Marquez VE, Harden TK, Jacobson KA (2003) 2-substitution of adenine nucleotide analogues containing a bicycle[3.1.0]hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists. J Med Chem 46(23):4974–4987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kunapuli SP (1998) Multiple P2 receptor subtypes on platelets: a new interpretation of their function. Trends Pharmacol Sci 19(10):391–394

    Article  CAS  PubMed  Google Scholar 

  • Kylhammar D, Rådegran G (2012) Cyclooxygenase-2 inhibition and thromboxane A2 receptor antagonism attenuate hypoxic pulmonary vasoconstriction in a porcine model. Acta Physiol 205(4):507–519

    Article  CAS  Google Scholar 

  • Lundgren J, Kylhammar D, Hedelin P, Rådegran G (2012) sGC stimulation totally reverses hypoxia-induced pulmonary vasoconstriction alone and combined with dual endothelin-receptor blockade in a porcine model. Acta Physiol 206(3):178–194

    Article  CAS  Google Scholar 

  • Mahesree ML, Chakravarti RN, Wahi PL (1975) Packed cells, platelet-rich plasma, and adenosine diphosphate in the production of occlusive vascular changes in lungs of rabbits. Am Heart J 89(6):753–758

    Article  CAS  PubMed  Google Scholar 

  • Malmsjö M, Adner M, Harden TK, Pendergast W, Edvinsson L, Erlinge D (2000) The stable pyrimidines UDPβS and UTPγS discriminate between the P2 receptors that mediate vascular contraction and relaxation of the rat mesenteric artery. Br J Pharmacol 131(1):51–56

    PubMed Central  PubMed  Google Scholar 

  • Marteau F, Le Poul E, Communi D, Communi D, Labouret C, Savi P, Boeynaems J-M, Gonzalez NS (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64(1):104–112

    Article  CAS  PubMed  Google Scholar 

  • McMurtry IF, Hookway BW, Roos S (1977) Red blood cells play a crucial role in maintaining vascular reactivity to hypoxia in isolated rat lungs. Chest 71(2 suppl):253–256

    Article  CAS  PubMed  Google Scholar 

  • Mitchell C, Syed NI, Tengah A, Gurney AM, Kennedy C (2012) Identification of contractile P2Y1, P2Y6, and P2Y12 receptors in rat intrapulmonary artery using selective ligands. J Pharmacol Exp Ther 343(3):755–762

    Article  CAS  PubMed  Google Scholar 

  • Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. J Appl Physiol 98(1):390–403

    Article  CAS  PubMed  Google Scholar 

  • Olivecrona GK, Götberg M, Harnek J, Wang L, Jacobson KA, Erlinge D (2004) Coronary artery reperfusion: the ADP receptor P2Y1 mediates early reactive hyperemia in vivo in pigs. Purinergic Signal 1(1):59–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pàvek K, Boska D, Selecky FV (1964) Measurement of cardiac output by thermodilution with constant rate injection of indicator. Circ Res 15:311–319

    Article  PubMed  Google Scholar 

  • Silove ED (1971) Effects of haemolysed blood and adenosine diphosphate on the pulmonary vascular resistance in calves. Cardiovasc Res 5(3):313–318

    Article  CAS  PubMed  Google Scholar 

  • van Giezen JJJ, Humphries RG (2005) Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin Thromb Hemost 31(2):195–204

    Article  PubMed  Google Scholar 

  • von Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Phys Scand 12:301–320

    Article  Google Scholar 

  • Wang L, Olivecrona G, Götberg M, Olsson ML, Winzell MS, Erlinge D (2005) ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ Res 96(2):189–196

    Article  CAS  PubMed  Google Scholar 

  • Weitzenblum E, Apprill M, Oswald M, Chaouat A, Imbs J (1994) Pulmonary hemodynamics in patients with chronic obstructive pulmonary disease before and during an episode of peripheral edema. Chest 105(5):1377–1382

    Article  CAS  PubMed  Google Scholar 

  • Wihlborg A-K, Malmsjö M, Eyjolfsson A, Gustafsson R, Jacobson K, Erlinge D (2003) Extracellular nucleotides induce vasodilatation in human arteries via prostaglandins, nitric oxide and endothelium-derived hyperpolarising factor. Br J Pharmacol 138(8):1451–1458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wihlborg A-K, Wang L, Braun OÖ, Eyjolfsson A, Gustafsson R, Gudbjartsson T, Erlinge D (2004) ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arterioscler Thromb Vasc Biol 24(10):1810–1815

    Article  CAS  PubMed  Google Scholar 

  • Wiklund A, Kylhammar D, Rådegran G (2012) Levosimendan attenuates hypoxia-induced pulmonary hypertension in a porcine model. J Cardiovasc Pharmacol 59(5):441–449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support of the animal technicians at the Department of Experimental Surgery and Medicine, the Panum Institute, University of Copenhagen, Copenhagen, Denmark, the staff at the Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark, and the staff at the Department of Cardiology, Lund University and the Clinic for Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden. We moreover acknowledge the financial support of the Copenhagen Muscle Research Centre, Copenhagen, Denmark, the Maggie Stephens-, Crafoord-, Per Westling- and “ALF” Foundations, Lund, Sweden, and the Dr. Hartelii Scholarship Fund, Lund, Sweden. Cangrelor was provided by The Medicines Company, Parsippany, NJ, USA.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kylhammar.

Additional information

Communicated by Carsten Lundby.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kylhammar, D., Bune, L.T. & Rådegran, G. P2Y1 and P2Y12 receptors in hypoxia- and adenosine diphosphate-induced pulmonary vasoconstriction in vivo in the pig. Eur J Appl Physiol 114, 1995–2006 (2014). https://doi.org/10.1007/s00421-014-2921-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2921-y

Keywords

Navigation