Skip to main content

Advertisement

Log in

Multidimensional assessment of self-reported chemical intolerance and its impact on chemosensory effects during ammonia exposure

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Purpose

Healthy individuals differ in self-reported chemical intolerance (CI). It is unclear whether this inter-individual variability impacts well-being and performance in environmental and occupational settings with chemical exposures. So far, operational definitions and questionnaires of CI have either emphasized physical symptoms or affective/behavioral disruption. In contrast, this study focused on healthy individuals who reported strong CI which generalized to awareness, physiology, affect, and behavior. We investigated whether generalized self-reported CI is associated with hyper-reactivity and reduced cognitive functioning due to chemosensory-mediated distraction during ammonia exposure.

Methods

An online sample (N = 321) answered established CI questionnaires. Based on the convergent self-reports in these questionnaires, healthy women with generalized CI and healthy female control participants were selected (total N = 26). Baseline characterization was performed using implicit association, lung and olfactory function tests, health-related self-reports, plasma inflammatory and metabolic markers. Performance in neurobehavioral tasks, perceptual ratings, nasal inflammatory, neuroendocrine, and autonomic nervous system reactivity were examined by means of a 75-min whole-body challenge to ammonia (stepwise increase: 0–10 ppm).

Results

Correlational analyses confirmed the multidimensionality of CI. Participants with generalized self-reported CI exhibited better olfactory function and reported stronger pungency during the challenge than controls. Cognitive performance and physiological response to the challenge were comparable between the two groups.

Conclusions

Self-reports of CI are complex and not easily assessed by unidimensional questionnaires. While generalized self-reported CI is associated with altered chemosensory processing, it seems unlikely that it modulates health effects and cognitive functioning during chemical exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersson L, Bende M, Millqvist E, Nordin S (2009) Attention bias and sensitization in chemical sensitivity. J Psychosom Res 66(5):407–416. doi:10.1016/j.jpsychores.2008.11.005

    Article  Google Scholar 

  • Andersson L, Claeson AS, Ledin L, Wisting F, Nordin S (2013) The influence of health-risk perception and distress on reactions to low-level chemical exposure. Front Psychol 4:816. doi:10.3389/fpsyg.2013.00816

    Google Scholar 

  • Andersson L, Claeson AS, Nyberg L, Stenberg B, Nordin S (2014) Brain responses to olfactory and trigeminal exposure in idiopathic environmental illness (IEI) attributed to smells—An fMRI study. J Psychosom Res 77(5):401–408. doi:10.1016/j.jpsychores.2014.09.014

    Article  Google Scholar 

  • Andersson L, Claeson AS, Dantoft TM, Skovbjerg S, Lind N, Nordin S (2016) Chemosensory perception, symptoms and autonomic responses during chemical exposure in multiple chemical sensitivity. Int Arch Occup Environ Health 89(1):79–88. doi:10.1007/s00420-015-1053-y

    Article  CAS  Google Scholar 

  • Bailer J, Witthöft M, Paul C, Bayerl C, Rist F (2005) Evidence for overlap between idiopathic environmental intolerance and somatoform disorders. Psychosom Med 67(6):921–929. doi:10.1097/01.psy.0000174170.66109.b7

    Article  Google Scholar 

  • Bailer J, Witthöft M, Rist F (2006) The Chemical Odor Sensitivity Scale: reliability and validity of a screening instrument for idiopathic environmental intolerance. J Psychosom Res 61(1):71–79. doi:10.1016/j.jpsychores.2005.11.005

    Article  Google Scholar 

  • Bell IR, Baldwin CM, Schwartz GE (2001) Sensitization studies in chemically intolerant individuals: implications for individual difference research. Ann N Y Acad Sci 933:38–47. doi:10.1111/j.1749-6632.2001.tb05812.x

    Article  CAS  Google Scholar 

  • Berg DN, Linneberg A, Dirksen A, Elberling J (2007) Prevalence of self-reported symptoms and consequences related to inhalation of airborne chemicals in a Danish general population. Int Arch Occup Environ Health 81(7):881–887. doi:10.1007/s00420-007-0282-0

    Article  Google Scholar 

  • Blanes-Vidal V, Nadimi ES, Ellermann T, Andersen HV, Lofstrom P (2012) Perceived annoyance from environmental odors and association with atmospheric ammonia levels in non-urban residential communities: a cross-sectional study. Environ Health 11:27. doi:10.1186/1476-069X-11-27

    Article  CAS  Google Scholar 

  • Brüning T, Bartsch R, Bolt H et al (2014) Sensory irritation as a basis for setting occupational exposure limits. Arch Toxicol 88(10):1855–1879. doi:10.1007/s00204-014-1346-z

    Article  Google Scholar 

  • Bulsing PJ, Smeets MA, van den Hout MA (2007) Positive implicit attitudes toward odor words. Chem Senses 32(6):525–534. doi:10.1093/chemse/bjm021

    Article  Google Scholar 

  • Caress SM, Steinemann AC (2004) Prevalence of multiple chemical sensitivities: a population-based study in the southeastern United States. Am J Public Health 94(5):746–747. doi:10.2105/AJPH.94.5.746

    Article  Google Scholar 

  • Carlsson F, Persson R, Karlson B, Osterberg K, Hansen AM, Garde AH, Orbaek P (2006) Salivary cortisol and self-reported stress among persons with environmental annoyance. Scand J Work Environ Health 32(2):109–120. doi:10.5271/sjweh.986

    Article  CAS  Google Scholar 

  • Cohen S, Kamarck T, Mermelstein R (1983) A global measure of perceived stress. J Health Soc Behav 24(4):385–396. doi:10.2307/2136404

    Article  CAS  Google Scholar 

  • Dantoft TM, Elberling J, Brix S, Szecsi PB, Vesterhauge S, Skovbjerg S (2014) An elevated pro-inflammatory cytokine profile in multiple chemical sensitivity. Psychoneuroendocrinology 40:140–150. doi:10.1016/j.psyneuen.2013.11.012

    Article  CAS  Google Scholar 

  • De Luca C, Scordo MG, Cesareo E et al (2010) Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes. Toxicol Appl Pharmacol 248(3):285–292. doi:10.1016/j.taap.2010.04.017

    Article  Google Scholar 

  • De Luca C, Raskovic D, Pacifico V, Thai JC, Korkina L (2011) The search for reliable biomarkers of disease in multiple chemical sensitivity and other environmental intolerances. Int J Environ Res Public Health 8(7):2770–2797. doi:10.3390/ijerph8072770

    Article  Google Scholar 

  • Doty RL, Deems DA, Frye RE, Pelberg R, Shapiro A (1988) Olfactory sensitivity, nasal resistance, and autonomic function in patients with multiple chemical sensitivities. Arch Otolaryngol Head Neck Surg 114(12):1422–1427. doi:10.1001/archotol.1988.01860240072027

    Article  CAS  Google Scholar 

  • Gosling SD, Vazire S, Srivastava S, John OP (2004) Should we trust web-based studies? A comparative analysis of six preconceptions about internet questionnaires. Am Psychol 59(2):93–104. doi:10.1037/0003-066X.59.2.93

    Article  Google Scholar 

  • Green BG, Dalton P, Cowart B, Shaffer G, Rankin K, Higgins J (1996) Evaluating the ‘Labeled Magnitude Scale’ for measuring sensations of taste and smell. Chem Senses 21(3):323–334. doi:10.1093/chemse/21.3.323

    Article  CAS  Google Scholar 

  • Greenwald AG, Nosek BA, Banaji MR (2003) Understanding and using the implicit association test: I. An improved scoring algorithm. J Pers Soc Psychol 85(2):197–216. doi:10.1037/0022-3514.85.2.197

    Article  Google Scholar 

  • Haumann K, Kiesswetter E, van Thriel C, Blaszkewicz M, Seeber A (2002) Psychophysiological functions of subjects with self-reported multiple chemical sensitivity (sMCS) during experimental solvent exposure. Int J Hyg Environ Health 204(5–6):371–373. doi:10.1078/1438-4639-00113

    Article  CAS  Google Scholar 

  • Haumann K, Kiesswetter E, van Thriel C, Blaszkewicz M, Golka K, Seeber A (2003) Breathing and heart rate during experimental solvent exposure of young adults with self-reported multiple chemical sensitivity (sMCS). Neurotoxicology 24(2):179–186. doi:10.1016/S0161-813X(02)00213-9

    Article  CAS  Google Scholar 

  • Hey K, Juran SA, Schäper M, Kleinbeck S, Kiesswetter E, Blaszkewicz M, Golka K, Brüning T, van Thriel C (2009) Neurobehavioral effects during exposures to propionic acid–an indicator of chemosensory distraction? Neurotoxicology 30(6):1223–1232. doi:10.1016/j.neuro.2009.08.009

    Article  CAS  Google Scholar 

  • Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264(3):237–243. doi:10.1007/s00405-006-0173-0

    Article  CAS  Google Scholar 

  • Ihrig A, Hoffmann J, Triebig G (2006) Examination of the influence of personal traits and habituation on the reporting of complaints at experimental exposure to ammonia. Int Arch Occup Environ Health 79(4):332–338. doi:10.1007/s00420-005-0042-y

    Article  Google Scholar 

  • Johansson A, Millqvist E, Nordin S, Bende M (2006) Relationship between self-reported odor intolerance and sensitivity to inhaled capsaicin: proposed definition of airway sensory hyperreactivity and estimation of its prevalence. Chest 129(6):1623–1628. doi:10.1378/chest.129.6.1623

    Article  Google Scholar 

  • Juran SA, Johanson G, Ernstgard L, Iregren A, van Thriel C (2014) Neurobehavioral performance in volunteers after inhalation of white spirits with high and low aromatic content. Arch Toxicol 88(5):1127–1140. doi:10.1007/s00204-014-1236-4

    Article  CAS  Google Scholar 

  • Kärnekull SC, Jonsson FU, Larsson M, Olofsson JK (2011) Affected by smells? Environmental chemical responsivity predicts odor perception. Chem Senses 36(7):641–648. doi:10.1093/chemse/bjr028

    Article  Google Scholar 

  • Kiesswetter E, Sietmann B, Zupanic M, van Thriel C, Golka K, Seeber A (1999) Verhaltenstoxikologische Aspekte der Prävalenz und Ätiologie “multipler chemischer Sensitivität”. Allergologie 22:719–735

    Google Scholar 

  • Koch K, Pauly K, Kellermann T et al (2007) Gender differences in the cognitive control of emotion: an fMRI study. Neuropsychologia 45(12):2744–2754. doi:10.1016/j.neuropsychologia.2007.04.012

    Article  Google Scholar 

  • Kroenke K, Spitzer RL, Williams JBW (2002) The PHQ-15: validity of a new measure for evaluating the severity of somatic symptoms. Psychosom Med 64(2):258–266. doi:10.1097/00006842-200203000-00008

    Article  Google Scholar 

  • Lacour M, Zunder T, Schmidtke K, Vaith P, Scheidt C (2005) Multiple Chemical Sensitivity Syndrome (MCS)—suggestions for an extension of the US MCS-case definition. Int J Hyg Environ Health 208(3):141–151. doi:10.1016/j.ijheh.2005.01.017

    Article  Google Scholar 

  • Lim J, Wood A, Green BG (2009) Derivation and evaluation of a labeled hedonic scale. Chem Senses 34(9):739–751. doi:10.1093/chemse/bjp054

    Article  Google Scholar 

  • Magnavita N (2001) Cacosmia in healthy workers. Br J Med Psychol 74(Pt 1):121–127. doi:10.1348/000711201160740

    Article  CAS  Google Scholar 

  • Magnavita N et al (2010) Comments on: De Luca C.,: Biological definition of multiple chemical sensitivity… Toxicol Appl Pharm.l epub ahead of publication. Toxicol Appl Pharmacol 248(3):293. doi:10.1016/j.taap.2010.07.019

    Article  CAS  Google Scholar 

  • Meggs WJ (1993) Neurogenic inflammation and sensitivity to environmental chemicals. Environ Health Perspect 101(3):234–248. doi:10.2307/3431548

    Article  CAS  Google Scholar 

  • Millqvist E, Ternesten-Hasseus E, Stahl A, Bende M (2005) Changes in levels of nerve growth factor in nasal secretions after capsaicin inhalation in patients with airway symptoms from scents and chemicals. Environ Health Perspect 113(7):849–852. doi:10.1289/ehp.7657

    Article  CAS  Google Scholar 

  • Nordin S, Millqvist E, Löwhagen O, Bende M (2003) The Chemical Sensitivity Scale: psychometric properties and comparison with the noise sensitivity scale. J Environ Psychol 23(4):359–367. doi:10.1016/S0272-4944(03)00002-1

    Article  Google Scholar 

  • Nordin S, Millqvist E, Löwhagen O, Bende M (2004) A short Chemical Sensitivity Scale for assessment of airway sensory hyperreactivity. Int Arch Occup Environ Health 77(4):249–254. doi:10.1007/s00420-004-0504-7

    Article  Google Scholar 

  • Nordin S, Martinkauppi M, Olofsson J, Hummel T, Millqvist E, Bende M (2005) Chemosensory perception and event-related potentials in self-reported chemical hypersensitivity. Int J Psychophysiol 55(2):243–255. doi:10.1016/j.ijpsycho.2004.08.003

    Article  Google Scholar 

  • Österberg K, Ørbæk P, Karlson B, Akesson B, Bergendorf U (2003) Annoyance and performance during the experimental chemical challenge of subjects with multiple chemical sensitivity. Scand J Work Environ Health 29(1):40–50. doi:10.5271/sjweh.703

    Article  Google Scholar 

  • Pacharra M, Schäper M, Kleinbeck S, Blaszkewicz M, van Thriel C (2016) Olfactory acuity and automatic associations to odor words modulate adverse effects of ammonia. Chemosens Percept 9(1):27–36. doi:10.1007/s12078-016-9202-6

    Article  CAS  Google Scholar 

  • Pall ML (2003) Elevated nitric oxide/peroxynitrite theory of multiple chemical sensitivity: central role of N-methyl-D-aspartate receptors in the sensitivity mechanism. Environ Health Perspect 111(12):1461–1464. doi:10.1289/ehp.5935

    Article  CAS  Google Scholar 

  • Pall ML (2010) Multiple chemical sensitivity is a response to chemicals acting as toxicants via excessive NMDA activity. J Psychosom Res 69(3):327–328. doi:10.1016/j.jpsychores.2010.05.007

    Article  Google Scholar 

  • Papo D, Eberlein-König B, Berresheim H-W, Huss-Marp J, Grimm V, Ring J, Behrendt H, Winneke G (2006) Chemosensory function and psychological profile in patients with multiple chemical sensitivity: comparison with odor-sensitive and asymptomatic controls. J Psychosom Res 60(2):199–209. doi:10.1016/j.jpsychores.2005.06.075

    Article  Google Scholar 

  • Seubert J, Freiherr J, Frasnelli J, Hummel T, Lundström JN (2013) Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cereb Cortex 23(10):2448–2456. doi:10.1093/cercor/bhs230

    Article  Google Scholar 

  • Skovbjerg S, Christensen KB, Ebstrup JF, Linneberg A, Zachariae R, Elberling J (2015) Negative affect is associated with development and persistence of chemical intolerance: a prospective population-based study. J Psychosom Res 78(5):509–514. doi:10.1016/j.jpsychores.2015.02.005

    Article  Google Scholar 

  • Smeets MA, Bulsing PJ, van Rooden S, Steinmann R, de Ru JA, Ogink NW, van Thriel C, Dalton PH (2007) Odor and irritation thresholds for ammonia: a comparison between static and dynamic olfactometry. Chem Senses 32(1):11–20. doi:10.1093/chemse/bjl031

    Article  CAS  Google Scholar 

  • Smeets MA, Schifferstein HN, Boelema SR, Lensvelt-Mulders G (2008) The Odor Awareness Scale: a new scale for measuring positive and negative odor awareness. Chem Senses 33(8):725–734. doi:10.1093/chemse/bjn038

    Article  Google Scholar 

  • Sucker K, Both R, Bischoff M, Guski R, Kramer U, Winneke G (2008) Odor frequency and odor annoyance Part II: dose-response associations and their modification by hedonic tone. Int Arch Occup Environ Health 81(6):683–694. doi:10.1007/s00420-007-0262-4

    Article  CAS  Google Scholar 

  • Sultan B, May LA, Lane AP (2011) The role of TNF-alpha in inflammatory olfactory loss. Laryngoscope 121(11):2481–2486. doi:10.1002/lary.22190

    Article  CAS  Google Scholar 

  • Sundblad B-M, Larsson B-M, Acevedo F, Ernstgård L, Johanson G, Larsson K, Palmberg L (2004) Acute respiratory effects of exposure to ammonia on healthy persons. Scand J Work Environ Health 30(4):313–321. doi:10.2307/40968794

    Article  CAS  Google Scholar 

  • Szarek MJ, Bell IR, Schwartz GE (1997) Validation of a brief screening measure of environmental chemical sensitivity: the chemical odor intolerance index. J Environ Psychol 17(4):345–351. doi:10.1006/jevp.1997.0071

    Article  Google Scholar 

  • Van den Bergh O, Meulders A, De Peuter S, Vansteenwegen D, Van Diest I (2010) Response to “Multiple chemical sensitivity is a response to chemicals acting as toxicants via excessive NMDA activity”. J Psychosom Res 69(3):328–330. doi:10.1016/j.jpsychores.2010.05.011

    Article  Google Scholar 

  • van Thriel C, Kiesswetter E, Blaszkewicz M, Golka K, Seeber A (2003a) Neurobehavioral effects during experimental exposure to 1-octanol and isopropanol. Scand J Work Environ Health 29(2):143–151. doi:10.5271/sjweh.716

    Article  Google Scholar 

  • van Thriel C, Seeber A, Kiesswetter E, Blaszkewicz M, Golka K, Wiesmüller GA (2003b) Physiological and psychological approaches to chemosensory effects of solvents. Toxicol Lett 140–141:261–271. doi:10.1016/S0378-4274(03)00022-5

    Article  Google Scholar 

  • van Thriel C, Wiesmüller GA, Blaszkewicz M, Golka K, Kiesswetter E, Seeber A, Bachert C (2003c) Intranasal effects in chemically sensitive volunteers: an experimental exposure study. Environ Toxicol Pharmacol 14(3):129–137. doi:10.1016/S1382-6689(03)00047-4

    Article  Google Scholar 

  • van Thriel C, Kiesswetter E, Schäper M, Blaszkewicz M, Golka K, Juran S, Kleinbeck S, Seeber A (2007) From neurotoxic to chemosensory effects: new insights on acute solvent neurotoxicity exemplified by acute effects of 2-ethylhexanol. Neurotoxicology 28(2):347–355. doi:10.1016/j.neuro.2006.03.008

    Article  Google Scholar 

  • van Thriel C, Kiesswetter E, Schäper M, Juran SA, Blaszkewicz M, Kleinbeck S (2008) Odor annoyance of environmental chemicals: sensory and cognitive influences. J Toxicol Environ Health A 71(11–12):776–785. doi:10.1080/15287390801985596

    Article  Google Scholar 

  • Watson D, Clark LA, Carey G (1988) Positive and negative affectivity and their relation to anxiety and depressive disorders. J Abnorm Psychol 97(3):346–353. doi:10.1037/0021-843X.97.3.346

    Article  CAS  Google Scholar 

  • Witthöft M, Rist F, Bailer J (2009) Abnormalities in cognitive-emotional information processing in idiopathic environmental intolerance and somatoform disorders. J Behav Ther Exp Psychiatry 40(1):70–84. doi:10.1016/j.jbtep.2008.04.002

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the DGUV—German Social Accident Insurance, Berlin, Germany (Project-No.: FF-FP0326). The study sponsor had no influence on the collection, analysis, and interpretation of data; on the writing of the report; or on the decision to submit the paper for publication. The authors would like to thank Nicola Schmidt-Peucker, Eva Strzelec, Michael Porta, Beate Aust, Gabriele Baumhoer, and Thorben Hagedorn for technical assistance. We are also grateful to Stephanie Anja Juran for her help with translating the CSS-SHR from Swedish into German and Leah Boccaccio for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Pacharra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The procedures performed in this study that involved human participants were in accordance with the ethical standards of the Institutional and/or National Research Committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacharra, M., Kleinbeck, S., Schäper, M. et al. Multidimensional assessment of self-reported chemical intolerance and its impact on chemosensory effects during ammonia exposure. Int Arch Occup Environ Health 89, 947–959 (2016). https://doi.org/10.1007/s00420-016-1134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-016-1134-6

Keywords

Navigation