Skip to main content
Log in

Advective flow in a magnetized layer of fluid between hydro-thermal slippery parallel walls

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper describes full solutions of the energy and Navier–Stokes equations in the approximate form of Boussinesq. The advective fluid layer flowing within parallel horizontal infinite walls subject to hydro-thermal slip conditions is of the prime interest. The control of the momentum/thermal motion is undertaken by a vertically applied magnetic field towards the parallel walls. The response of the layer to the momentum slip and thermal jump conditions under the applied magnetic field is investigated through solving exactly the idealized system of equations. From the obtained closed-form formulae, behaviour of the velocity and temperature fields as well as the rigid/free and thermally conducting/insulating wall cases is easy to gain. Results clearly imply that hydro-thermal slip enhances both velocity and temperature fields, unlike the suppression effects of magnetic field. Full solutions as presented here can serve as good basic flow for further research including the linear/nonlinear stability issues in regard to the plane or spiral perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hudoba, A., Molokov, S., Aleksandrova, S., Pedcenko, A.: Linear stability of buoyant convection in a horizontal layer of an electrically conducting fluid in moderate and high vertical magnetic field. Phys. Fluids 28, 094104 (2016)

    Article  Google Scholar 

  2. Qin, T., Tukovic, Z., Grigoriev, R.O.: Buoyancy-thermocapillary convection of volatile fluids under atmospheric conditions. Int. J. Heat Mass Transf. 75, 284–301 (2014)

    Article  Google Scholar 

  3. Biagioli, E., Vitturi, M.D.M., Di Benedetto, F.: Modified shallow water model for viscous fluids and positivity preserving numerical approximation. Appl. Math. Model. 94, 482–505 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ozoe, H.: Magnetic Convection. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  5. Gershuni, G.Z., Zhukhovitskii, M.E.: Plane-parallel advective flows in vibrational field. Eng. Phys. J. 56, 238–242 (1989)

    Article  Google Scholar 

  6. Birikh, R.V.: Vibrational convection in a plane layer with the longitudinal temperature gradient. Fluid Dyn. 25, 500–503 (1990)

    Article  Google Scholar 

  7. Aleksandrova, S., Molokov, S.: Three-dimensional buoyant convection in a rectangular cavity with differentially heated walls in a strong magnetic field. Fluid Dyn. Res. 35, 37–66 (2004)

    Article  MATH  Google Scholar 

  8. Garandet, J., Alboussiere, T., Moreau, R.: Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Int. J. Heat Mass Transf. 35, 741–748 (1992)

    Article  MATH  Google Scholar 

  9. Kaddeche, S., Hendry, D., Benhadid, H.: Magnetic stabilization of the buoyant convection between infinite horizontal walls with a horizontal temperature gradient. J. Fluid Mech. 480, 185–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pukhnachev, V.V.: Unsteady counterparts of the Birikh solutions. Izv. Alt. Gos. Univ. Nos. 1–2, 62–69 (2011)

    Google Scholar 

  11. Aristov, S.N., Shvarts, K.G.: Convective heat transfer in a locally heated plane incompressible fluid layer. Fluid Dyn. 48, 330–335 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schwarz, E.G.: Plane-parallel advective flow in a horizontal incompressible fluid layer with rigid boundaries. Fluid Dyn. 49, 438–442 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Aristov, S.N., Shvarts, K.G.: Advective flow in a rotating liquid film. Zh. Prikl. Mekh. Tekh. Fiz. 57, 188–194 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Shvarts, K.G.: Advective flow of a rotating fluid layer in a vibrational field. Russ. J. Nonlinear Dyn. 15, 261–270 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Sagitov, R.V., Sharifulin, A.N.: Effect of slipping on the bifurcation of convection regimes in a inclined closed cavity. In: Perm Hydrodynamic Workshop: Proceedings of All-Russian Conference with International Participation Devoted to Memory of Profs. G. Z. Gershuni, E. M. Zhukhovitskii, and D. V. Lyubimov (2018)

  16. Dubov, A.L., Nizkaya, T.V., Asmolov, E.S., Vinogradova, O.I.: Boundary conditions at the gas sectors of superhydrophobic grooves. Phys. Rev. Fluids 3, 014002 (2018)

    Article  Google Scholar 

  17. Schwarz, K.G., Schwarz, Y.A.: Stability of advective flow in a horizontal incompressible fluid layer in the presence of the Navier slip condition. Fluid Dyn. 55, 31–42 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Etzold, M.A., Landel, J.R., Dalziel, S.B.: Three-dimensional advective-diffusive boundary layers in open channels with parallel and inclined walls. Int. J. Heat Mass Transf. 153, 119504 (2020)

    Article  Google Scholar 

  19. Chen, H.-T., Ma, W.-X., Lin, P.-Y.: Natural convection of plate finned tube heat exchangers with two horizontal tubes in a chimney: experimental and numerical study. Int. J. Heat Mass Transf. 147, 118948 (2020)

    Article  Google Scholar 

  20. Konar, D., Sultan, M.A., Roy, S.: Numerical analysis of 2-D laminar natural convection heat transfer from solid horizontal cylinders with longitudinal fins. Int. J. Therm. Sci. 154, 106391 (2020)

    Article  Google Scholar 

  21. Nemati, H., Moradaghay, M., Moghimic, M.A., Meyer, J.P.: Natural convection heat transfer over horizontal annular elliptical finned tubes. Int. Commun. Heat Mass Transf. 118, 104823 (2020)

    Article  Google Scholar 

  22. Waqas, M., Gulshan, N., Asghar, Z., Gulzar, M.M., Bilal, M.: Visualization of stratification based Eyring–Powell material flow capturing nonlinear convection effects. J. Therm. Anal. Calorim. 143, 2577–2584 (2021)

    Article  Google Scholar 

  23. Bilal, M., Urva, Y.: Analysis of non-newtonian fluid flow over fine rotating thin needle for variable viscosity and activation energy. Arch. Appl. Mech. 91, 1079–1095 (2021)

    Article  Google Scholar 

  24. Bilal, M., Ramzan, M., Siddique, I., Sajjad, A.: Magneto-micropolar nanofluid flow through the convective permeable channel using Koo–Kleinstreuer–Li model. J. Magn. Magn. Mater. 565, 170288 (2023)

    Article  Google Scholar 

  25. Akram, S., Saeed, K., Athar, M., Razia, A., Hussain, A., Naz, I.: Convection theory on thermally radiative peristaltic flow of Prandtl tilted magneto nanofluid in an asymmetric channel with effects of partial slip and viscous dissipation. Mater. Today Commun. 35, 106171 (2023)

    Article  Google Scholar 

  26. Khan, Y., Athar, M., Akram, S., Saeed, K., Razia, A., Alameer, A.: Roll of partial slip on Ellis nanofluid in the proximity of double diffusion convection and tilted magnetic field: application of Chyme movement. Heliyon 9, e14760 (2023)

    Article  Google Scholar 

  27. Akram, S., Athar, M., Saeed, K., Razia, A.: Theoretical analysis of partial slip on double-diffusion convection of Eyring–Powell nanofluids under the effects of peristaltic propulsion and inclined magnetic field. J. Magn. Magn. Mater. 569, 170445 (2023)

    Article  Google Scholar 

  28. Gershuni, G.Z., Zhukhovitskii, E.M., Nepomnyashchii, A.A.: Stability of Convective Flows. Nauka, Moscow (1989)

    Google Scholar 

  29. Smith, M.K., Davis, S.H.: Instabilities of dynamic thermocapillary liquid layers. Part I: convective instabilities. J. Fluid Mech. 132, 119 (1983)

    Article  MATH  Google Scholar 

  30. Zebib, A.: Thermocapillary instabilities with system rotation. Phys. Fluids 8, 3209–3211 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Birikh, R.V., Katanova, T.N.: On stabilization of advective flow by transverse vibrations. In: Lyubimov, D.V. (ed.) Vibrational Effects in Hydrodynamics, vol. 1, pp. 25–37. Perm University Press, Perm (1998)

    Google Scholar 

  32. Hof, B.: A Study of Magnetohydrodynamic Convection in Liquid Gallium. University of Manchester, Manchester (2001)

    Google Scholar 

  33. Shvarts, K.G., Boudlal, A.: Effect of rotation on stability of advective flow in horizontal liquid layer with a free upper boundary. J. Phys. Conf. Ser. 216, 012005 (2010)

    Article  Google Scholar 

  34. Andreev, V.K., Bekezhanova, V.B.: Stability of non-isothermal fluids. J. Appl. Mech. Tech. Phys. 54, 171–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Turkyilmazoglu.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkyilmazoglu, M. Advective flow in a magnetized layer of fluid between hydro-thermal slippery parallel walls. Arch Appl Mech 93, 4351–4360 (2023). https://doi.org/10.1007/s00419-023-02495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02495-0

Keywords

Navigation