Skip to main content
Log in

Parametric analysis of an axially moving beam with time-dependent velocity, longitudinally varying tension and subjected to internal resonance

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The current study aims to analyze the dynamic characteristics of the nonlinear system excited parametrically in the presence of internal resonance. The method of multiple time scales (MMS) is directly adopted to simplify the higher-order integro-partial differential equation of motion to get an approximate solution that leads to a set of first-order partial differential equations. To develop a suitable model for a moving beam, the parameters incorporated are viscoelasticity and viscous damping, geometric nonlinearity, Coriolis acceleration, harmonically varying velocity, and axially varying tension. The stability and bifurcations of the steady-state solution are examined under a subcritical speed regime. The investigation focuses on the changes in the stability and bifurcation features of steady-state solutions accounting for the effects of variations in the system parameters like internal and parametric frequency detuning parameters, the amplitude of fluctuating speed, and axial stiffness. The outcomes of this investigation are unique, interesting, and not available in the existing literature, which may provide theoretical insight in designing a traveling system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    Google Scholar 

  2. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    Book  Google Scholar 

  3. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    Google Scholar 

  4. Oz, H.R.: Natural frequencies of axially travelling tensioned beams in contact with a stationary mass. J. Sound Vib. 259(2), 445–456 (2003)

    Google Scholar 

  5. Wickert, J.: A, Non-linear vibration of a traveling tensioned beam. Int. J. Non-Linear Mech. 27(3), 503–517 (1992)

    Article  Google Scholar 

  6. Oz, H.R.: On the vibrations of an axially travelling beam on fixed supports with variable velocity. J. Sound Vib. 239(3), 556–564 (2001)

    Article  Google Scholar 

  7. Pakdemirli, M., Oz, H.R.: Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations. J. Sound Vib. 311(3–5), 1052–1074 (2008)

    Article  Google Scholar 

  8. Ding, H., Chen, L.Q.: Stability of axially accelerating viscoelastic beams: Multi-scale analysis with numerical confirmations. Eur. J. Mech.-A/Solids 27(6), 1108–1120 (2008)

    Article  MathSciNet  Google Scholar 

  9. Wang, B., Chen, L.Q.: Asymptotic stability analysis with numerical confirmation of an axially accelerating beam constituted by the standard linear solid model. J. Sound Vib. 328(4–5), 456–466 (2009)

    Article  Google Scholar 

  10. Oz, H.R., Pakdemirli, M., Boyacı, H.: Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. Int. J. Non-Linear Mech. 36(1), 107–115 (2001)

    Article  Google Scholar 

  11. Chakraborty, G., Mallik, A.K.: Stability of an accelerating beam.". J. Sound Vib. 227(2), 309–320 (1999)

    Article  Google Scholar 

  12. Chen, L.-Q., Yang, X.-D.: Steady-state response of axially moving viscoelastic beams with pulsating speed: Comparison of two nonlinear models. Int. J. Solids Struct. 42(1), 37–50 (2005)

    Article  Google Scholar 

  13. Chen, L.-Q., Yang, X.-D.: Transverse nonlinear dynamics of axially accelerating viscoelastic beams based on 4-term Galerkin truncation. Chaos Solit. Fractals 27(3), 748–757 (2006)

    Article  Google Scholar 

  14. Ghayesh, M.H., Khadem, S.E.: Rotary inertia and temperature effects on non-linear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity. Int. J. Mech. Sci. 50(3), 389–404 (2008)

    Article  Google Scholar 

  15. Ghayesh, M.H., Amabili, M.: Nonlinear vibrations and stability of an axially moving Timoshenko beam with an intermediate spring support. Mech. Mach. Theory 67, 1–16 (2013)

    Article  Google Scholar 

  16. Ghayesh, M.H., Mergen, H.: Coupled longitudinal–transverse dynamics of an axially accelerating beam. J. Sound Vib. 331(23), 5107–5124 (2012)

    Article  Google Scholar 

  17. Ghayesh, M.H., Mergen, H., Amabili, M., Farokhi, H.: "Coupled global dynamics of an axially moving viscoelastic beam. Int J Non-Linear Mech 51, 54–74 (2013)

    Article  Google Scholar 

  18. Bagdatli, M.S., Uslu, B.: Free vibration analysis of axially moving beam under non-ideal conditions. Struct Eng Mech 543, 597–605 (2015)

    Article  Google Scholar 

  19. Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dyn. 20(2), 131–158 (1999)

    Article  MathSciNet  Google Scholar 

  20. Ghayesh, M.H.: Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance. Int. J. Mech. Sci. 53(11), 1022–1037 (2011)

    Article  Google Scholar 

  21. Ghayesh, M.H., Kafiabad, H.A., Reid, T.: Sub-and super-critical nonlinear dynamics of a harmonically excited axially moving beam. Int. J. Solids Struct. 49(1), 227–243 (2012)

    Article  Google Scholar 

  22. Ghayesh, M.H., Kazemirad, S., Amabili, M.: Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance. Mech. Mach. Theory 52, 18–34 (2012)

    Article  Google Scholar 

  23. Ghayesh, M.H., AndAmabili, M.: Post-buckling bifurcations and stability of high-speed axially moving beams. Int. J. Mech. Sci. 68, 76–91 (2013)

    Article  Google Scholar 

  24. Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of an axially moving Timoshenko beam with an internal resonance. Nonlinear Dyn. 73(1), 39–52 (2013)

    Article  MathSciNet  Google Scholar 

  25. Ghayesh, M.H., Amabili, M.: Steady-state transverse response of an axially moving beam with time-dependent axial speed. Int. J. Non-Linear Mech. 49, 40–49 (2013)

    Article  Google Scholar 

  26. Ghayesh, M. H., Marco, A., and Hamed, F. "Stability and Bifurcations in Three-Dimensional Analysis of Axially Moving Beams." In: ASME International mechanical engineering congress and exposition, vol. 56246, p. V04AT04A053. American Society of Mechanical Engineers, 2013

  27. Ding, H., Huang, L., Mao, X., Chen, L.: Primary resonance of traveling viscoelastic beam under internal resonance. Appl. Math. Mech. 38(1), 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  28. DingH, L.Y., Chen, L.Q.: Effects of rotary inertia on sub-and super-critical free vibration of an axially moving beam. Meccanica 53, 3233–3249 (2018)

    Article  MathSciNet  Google Scholar 

  29. Ding, H., Lim, C.W., Chen, L.Q.: Nonlinear vibration of a traveling belt with non-homogeneous boundaries. J. Sound Vib. 424, 78–93 (2018)

    Article  Google Scholar 

  30. Mao, X.Y., Ding, H., Chen, L.Q.: Forced vibration of axially moving beam with internal resonance in the supercritical regime. Int. J. Mech. Sci. 131, 81–94 (2017)

    Article  Google Scholar 

  31. Mao, X.Y., Ding, H., Chen, L.Q.: Internal resonance of a supercritically axially moving beam subjected to the pulsating speed. Nonlinear Dyn. 95(1), 631–651 (2019)

    Article  Google Scholar 

  32. Sze, K.Y., Chen, S.H., Huang, J.L.: The incremental harmonic balance method for nonlinear vibration of axially moving beams. J. Sound Vib. 281, 611–626 (2005)

    Article  Google Scholar 

  33. Lenci, S., Clementi, F.: Natural frequencies and internal resonance of beams with arbitrarily distributed axial loads. J. Appl. Comput. Mech. 7, 1009–1019 (2021)

    Google Scholar 

  34. Chen, L.H., Zhang, W., Yang, F.H.: Nonlinear dynamics of higher-dimensional system for an axially accelerating viscoelastic beam with in-plane and out-of-plane vibrations. J. Sound Vib. 329(25), 5321–5345 (2010)

    Article  Google Scholar 

  35. Özhan, B.B.: Vibration and stability analysis of axially moving beams with variable speed and axial force. Int. J. Struct. Stab. Dyn. 14(06), 1450015 (2014)

    Article  MathSciNet  Google Scholar 

  36. Lv, H., Li, Y., Li, L., Liu, Q.: Transverse vibration of viscoelastic sandwich beam with time-dependent axial tension and axially varying moving velocity. Appl. Math. Model. 38(9–10), 2558–2585 (2014)

    Article  MathSciNet  Google Scholar 

  37. Zhu, Bo., Dong, Y., Li, Y.: Nonlinear dynamics of a viscoelastic sandwich beam with parametric excitations and internal resonance. Nonlinear Dyn. 94(4), 2575–2612 (2018)

    Article  Google Scholar 

  38. Chen, L.Q., Tang, Y.Q.: Combination and principal parametric resonances of axially accelerating viscoelastic beams: recognition of longitudinally varying tensions. J. Sound Vib. 330(23), 5598–5614 (2011)

    Article  Google Scholar 

  39. Chen, L.Q., Tang, Y.Q.: Parametric stability of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. J. Vib. Acoust. 134, 011008 (2012)

    Article  Google Scholar 

  40. Tang, Y.Q., Chen, L.Q., Zhang, H.J., Yang, S.P.: Stability of axially accelerating viscoelastic Timoshenko beams: Recognition of longitudinally varying tensions. Mech. Mach. Theory 62, 31–50 (2013)

    Article  Google Scholar 

  41. Tang, Y.Q., Zhang, D.B., Gao, J.M.: Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dyn. 83(1), 401–418 (2016)

    Article  MathSciNet  Google Scholar 

  42. Zhang, D.B., Tang, Y.Q., Liang, R.Q., Yang, L., Chen, L.Q.: Dynamic stability of an axially transporting beam with two-frequency parametric excitation and internal resonance. Eur. J. Mech.-A/Solids 85, 104084 (2021)

    Article  MathSciNet  Google Scholar 

  43. Yan, Q., Ding, H., Chen, L.: Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations. Appl. Math. Mech. 36(8), 971–984 (2015)

    Article  MathSciNet  Google Scholar 

  44. Yan, T., Yang, T., Chen, L.: Direct multiscale analysis of stability of an axially moving functionally graded beam with time-dependent velocity. Acta Mech. Solida Sin. 33(2), 150–163 (2020)

    Article  Google Scholar 

  45. Tang, Y.-Q., Ma, Z.-G., Liu, S., Zhang, L.-Y.: Parametric vibration and numerical validation of axially moving viscoelastic beams with internal resonance, time and spatial dependent tension, and tension dependent speed. J Vib. Acoust. 141, 061011 (2019)

    Article  Google Scholar 

  46. Tang, Y.Q., Ma, Z.G.: Nonlinear vibration of axially moving beams with internal resonance, speed-dependent tension, and tension-dependent speed. Nonlinear Dyn. 98, 2475–2490 (2019)

    Article  Google Scholar 

  47. Tang, Y.Q., Zhou, Y., Liu, S., Jiang, S.Y.: Complex stability boundaries of axially moving beams with interdependent speed and tension. Appl. Math. Model. 89, 208–224 (2021)

    Article  MathSciNet  Google Scholar 

  48. Mote, C.D., Jr.: A study of band saw vibrations. J. Franklin Inst. 279(6), 430–444 (1965)

    Article  Google Scholar 

  49. Raj, S.K., Sahoo, B., Nayak, A.R., Panda, L.N.: Nonlinear dynamics of traveling beam with longitudinally varying axial tension and variable velocity under parametric and internal resonances. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07948-9

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bamadev Sahoo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \varsigma _{1} = \left[ { - 2\,(i\omega _{1} \phi _{1} + V_{0} \phi ^{\prime})A^{\prime}_{1} - 2i\alpha \,\omega _{1} A_{1} \phi _{1}^{{\prime \prime \prime \prime }} - 2i\mu \,\omega _{1} A_{1} \phi _{1} } \right] $$
$$ \varsigma _{2} = \frac{1}{2}v_{l}^{2} \left\{ {A_{1}^{2} \bar{A}_{1} \left( {2\phi _{1}^{{\prime \prime }} \int\limits_{0}^{1} {\phi _{1}^{\prime } \bar{\phi }_{1}^{\prime } \,dx + \bar{\phi }^{{\prime \prime }} _{1} } \int\limits_{0}^{1} {\phi _{1}^{{\prime 2}} {\text{d}}x} } \right) + 2A_{1} A_{2} \bar{A}_{2} \left( {\bar{\phi }_{2}^{{\prime \prime }} \int\limits_{0}^{1} {\phi _{1}^{\prime } \phi _{2}^{\prime } dx + 2A_{1} A_{2} \bar{A}_{2} \phi _{1}^{{\prime \prime }} \int\limits_{0}^{1} {\phi _{2}^{\prime } \bar{\phi }_{2}^{\prime } dx} + 2A_{1} A_{2} \bar{A}_{2} \phi _{2}^{{\prime \prime }} \int\limits_{0}^{1} {\phi _{1}^{\prime } \bar{\phi }_{2}^{\prime } dx} } } \right)} \right\} $$
$$ \varsigma _{3} = \frac{1}{2}v_{l} ^{2} \left\{ {2\bar{A}_{1} ^{2} A_{2} \bar{\phi }_{1}^{{\prime \prime }} \int\limits_{0}^{1} {\phi ^{\prime } _{2} \bar{\phi }^{\prime } _{1} x} + \bar{A}_{1} ^{2} A_{2} \phi ^{{\prime \prime }} _{2} \int\limits_{0}^{1} {\bar{\phi ^{\prime 2}}_{1} \,dx} } \right\} $$
$$ \varsigma _{4} = \left[ { - 2\left( {i\omega _{2} \phi _{2} + V_{0} A_{2}^{\prime } \phi _{2}^{\prime } } \right)A_{2}^{\prime } \, - 2\alpha i\omega _{2} A_{2} \phi _{2}^{{\prime \prime \prime \prime }} - 2\mu \,i\omega _{2} A_{2} \phi _{2} } \right] $$
$$ \varsigma _{5} = \frac{1}{2}v_{l} ^{2} \left\{ {A_{2}^{2} \bar{A}_{2} \left( {2\phi _{2}^{{\prime \prime }} \int\limits_{0}^{1} {\phi _{2}^{\prime } \bar{\phi }_{2}^{\prime } {\text{d}}x} + \bar{\phi }_{2}^{{\prime \prime }} \int\limits_{0}^{1} {\phi _{2}^{{'2}} {\text{d}}x} } \right) + 2A_{1} \bar{A}_{1} A_{2} \left( {\phi _{1}^{{\prime \prime }} \int\limits_{0}^{1} {\phi ^{\prime}_{2} \bar{\phi }_{1}^{\prime } {\text{d}}x} + \phi _{2}^{{\prime \prime }} \int\limits_{0}^{1} {\phi _{1}^{\prime } \bar{\phi }_{1}^{\prime } {\text{d}}x} + \bar{\phi }^{\prime \prime}_{1} \int\limits_{0}^{1} {\phi _{1}^{\prime } \phi _{2}^{\prime } {\text{d}}x} } \right)} \right\}$$
$$ \varsigma _{6} = \frac{1}{2}v_{l} ^{2} \left\{ {A_{1}^{3} \left( {\phi _{1}^{{\prime \prime }} \int\limits_{0}^{1} {\phi ^{{\prime 2}} _{1} dx} } \right)} \right\} $$
$$ \zeta_{7} = \overline{A}_{2} \left\{ {\,V_{1} \omega_{2} \overline{\phi^{\prime}}_{2} - \frac{{\,V_{1} \Omega }}{2}\left( {1 - x} \right)\overline{\phi^{\prime\prime}}_{2} + i\,kV_{0} V_{1} \overline{\phi^{\prime\prime}}_{2} } \right\} $$

\(S_{1} = \frac{{\frac{1}{16}v_{l}^{2} \left\{ {2\int\limits_{0}^{1} {\phi_{1}^{^{\prime\prime}} \overline{\phi }_{1} dx} \int\limits_{0}^{1} {\phi_{1}^{^{\prime}} \overline{\phi }_{1}^{^{\prime}} dx} + \int\limits_{0}^{1} {\overline{\phi }_{1}^{^{\prime\prime}} \overline{\phi }_{1} dx} \int\limits_{0}^{1} {\phi_{1}^{^{\prime}2} dx} } \right\}}}{{ - \left\{ {i\omega_{1} \int\limits_{0}^{1} {\phi_{1} \overline{\phi }_{1} dx} + V_{0} \int\limits_{0}^{1} {\phi_{1}^{^{\prime}} \overline{\phi }_{1} dx} } \right\}}}\);\(S_{2} = \frac{{\frac{1}{8}v_{l}^{2} \left\{ {\int\limits_{0}^{1} {\overline{\phi }^{\prime\prime}_{2} \overline{\phi }_{1} dx} \int\limits_{0}^{1} {\phi^{\prime}_{1} \phi^{\prime}_{2} dx} + \int\limits_{0}^{1} {\phi^{\prime\prime}_{1} \overline{\phi }_{1} dx} \int\limits_{0}^{1} {\phi^{\prime}_{2} \overline{\phi }^{\prime}_{2} dx} + \int\limits_{0}^{1} {\phi^{\prime\prime}_{2} \overline{\phi }_{1} dx} \int\limits_{0}^{1} {\phi^{\prime}_{1} \overline{\phi }^{\prime}_{2} dx} } \right\}}}{{ - \left\{ {i\omega_{1} \int\limits_{0}^{1} {\phi_{1} \overline{\phi }_{1} dx} + \,V_{0} \int\limits_{0}^{1} {\phi^{\prime}_{1} \overline{\phi }_{1} dx} } \right\}}}\)

\(S_{3} = \frac{{\frac{1}{8}v_{l}^{2} \left\{ {\int\limits_{0}^{1} {\phi^{\prime\prime}_{2} \overline{\phi }_{2} dx} \int\limits_{0}^{1} {\phi^{\prime}_{1} \overline{\phi }^{\prime}_{1} dx} + \int\limits_{0}^{1} {\overline{\phi }^{\prime\prime}_{1} \overline{\phi }_{2} dx} \int\limits_{0}^{1} {\phi^{\prime}_{1} \phi^{\prime}_{2} dx} + \int\limits_{0}^{1} {\phi^{\prime\prime}_{1} \overline{\phi }_{2} dx} \int\limits_{0}^{1} {\phi^{\prime}_{2} \overline{\phi }^{\prime}_{1} dx} } \right\}}}{{ - \left\{ {i\omega_{2} \int\limits_{0}^{1} {\phi_{2} \overline{\phi }_{2} dx} + \,V_{0} \int\limits_{0}^{1} {\phi^{\prime}_{2} \overline{\phi }_{2} dx} } \right\}}}\); \( S_{4} = \frac{{\frac{1}{{16}}v_{l}^{2} \left\{ {2\int\limits_{0}^{1} {\phi _{2}^{{\prime \prime }} \bar{\phi }_{2} dx} \int\limits_{0}^{1} {\phi _{2}^{\prime } \bar{\phi }_{2}^{\prime } dx} + \int\limits_{0}^{1} {\bar{\phi }_{2}^{{\prime \prime }} \bar{\phi }_{2} dx} \int\limits_{0}^{1} {\phi ^{{\prime _{2}^{2} }} dx} } \right\}}}{{ - \left\{ {i\omega _{2} \int\limits_{0}^{1} {\phi _{2} \bar{\phi }_{2} dx} + {\mkern 1mu} V_{0} \int\limits_{0}^{1} {\phi _{2}^{\prime } \bar{\phi }_{2} dx} } \right\}}} \).

\(K_{4} = \frac{{\frac{1}{2}\left\{ {V_{1} \omega_{2} \int\limits_{0}^{1} {\overline{\phi }_{2}^{\prime } \overline{\phi }_{2} dx} - \frac{{V_{1} \Omega }}{2}\int\limits_{0}^{1} {\left( {1 - x} \right)\overline{\phi }_{2}^{\prime \prime } } \overline{\phi }_{2} dx + ikV_{0} V_{1} \int\limits_{0}^{1} {\overline{\phi }_{2}^{\prime \prime } \overline{\phi }_{2} dx} } \right\}}}{{ - \left\{ {i\omega_{2} \int\limits_{0}^{1} {\phi_{2} \overline{\phi }_{2} dx} + V_{0} \int\limits_{0}^{1} {\phi^{\prime}_{2} \overline{\phi }_{2} dx} } \right\}}}\);\(C_{1} = \frac{{ - i\omega_{1} \int\limits_{0}^{1} {\phi_{1} \overline{\phi }_{1} dx} }}{{ - \left\{ {i\omega_{1} \int\limits_{0}^{1} {\phi_{1} \overline{\phi }_{1} dx} + \,V_{0} \int\limits_{0}^{1} {\phi^{\prime}_{1} \overline{\phi }_{1} dx} } \right\}}}\).

\(C_{2} = \frac{{ - i\omega_{2} \int\limits_{0}^{1} {\phi_{2} \overline{\phi }_{2} dx} }}{{ - \left\{ {i\omega_{2} \int\limits_{0}^{1} {\phi_{2} \overline{\phi }_{2} dx} + V_{0} \int\limits_{0}^{1} {\phi^{\prime}_{2} \overline{\phi }_{2} dx} } \right\}}}\);\( e_{1} = \frac{{ - i\omega _{1} \int\limits_{0}^{1} {\phi ^{{\prime \prime \prime \prime _{1} }} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \bar{\phi }_{1} dx} }}{{ - \left\{ {i\omega _{1} \int\limits_{0}^{1} {\phi _{1} \bar{\phi }_{1} dx} + V_{0} \int\limits_{0}^{1} {\phi _{1}^{\prime } \bar{\phi }_{1} dx} } \right\}}} \);\( e_{2} = \frac{{ - i\omega _{2} \int\limits_{0}^{1} {\phi ^{{\prime \prime \prime \prime _{2} }} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \bar{\phi }_{2} dx} }}{{ - \left\{ {i\omega _{2} \int\limits_{0}^{1} {\phi _{2} \bar{\phi }_{2} dx} + V_{0} \int\limits_{0}^{1} {\phi _{2}^{\prime } \bar{\phi }_{2} dx} } \right\}}} \).\( g_{1} = \frac{{\frac{1}{{16}}v_{l}^{2} \left\{ {2\int\limits_{0}^{1} {\bar{\phi }_{1}^{{\prime \prime }} \bar{\phi }_{1} dx} \int\limits_{0}^{1} {\phi _{2}^{\prime } \bar{\phi }_{1}^{\prime } dx} + \int\limits_{0}^{1} {\phi _{2}^{{\prime \prime }} \bar{\phi }_{1} dx} \int\limits_{0}^{1} {\bar{\phi }^{{\prime _{1}^{2} }} dx} } \right\}}}{{ - \left\{ {i\omega _{1} \int\limits_{0}^{1} {\phi _{1} \bar{\phi }_{1} dx} + V_{0} \int\limits_{0}^{1} {\phi _{1}^{\prime } \bar{\phi }_{1} dx} } \right\}}} \); \( g_{2} = \frac{{\frac{1}{{16}}v_{l}^{2} \left\{ {\int\limits_{0}^{1} {\phi _{1}^{\prime } \bar{\phi }_{2} dx} \int\limits_{0}^{1} {\phi ^{{\prime _{1}^{2} }} dx} } \right\}}}{{ - \left\{ {i\omega _{2} \int\limits_{0}^{1} {\phi _{2} \bar{\phi }_{2} dx} + V_{0} \int\limits_{0}^{1} {\phi _{2}^{\prime } \bar{\phi }_{2} dx} } \right\}}} \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, S.K., Sahoo, B., Nayak, A.R. et al. Parametric analysis of an axially moving beam with time-dependent velocity, longitudinally varying tension and subjected to internal resonance. Arch Appl Mech 94, 1–20 (2024). https://doi.org/10.1007/s00419-023-02415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02415-2

Keywords

Navigation