Skip to main content
Log in

Non-Fourier thermal shock resistance of the ceramic plate with an embedded elliptical crack

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Elliptical cracks are common in practice engineering. Non-Fourier heat conduction law assumed that the speed of heat propagation in a body is finite. When the length size of materials reduces to micro/nanoscale or the thermal shock time reduces to ps/fs scale, the theory is more exact to evaluate the thermal shock resistance. In this paper, non-Fourier thermal fracture and thermal shock resistance of a ceramic plate with an embedded elliptical crack are evaluated. Firstly, the non-Fourier temperature is analytically solved by the standard separation of variables method. Secondly, the thermal stress is obtained for the ceramic plate without crack by temperature-stress constitutive equation. Thirdly, the thermal stress intensity factor is given by the thermal stress. Finally, the thermal shock resistance is evaluated by the strength and fracture toughness failure criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wei, K., Liang, D., Mei, M., Yang, X.J., Chen, M.: A viscoelastic model of compression and relaxation behaviors in preforming process for carbon fiber fabrics with binder. Compos. Part. B-Eng. 158, 1–9 (2019)

    Article  Google Scholar 

  2. Fahrenholtz, W.G., Hilmas, G.E.: Ultra-high temperature ceramics: materials for extreme environments. Scripta. Mater. 129, 94–99 (2017)

    Article  Google Scholar 

  3. Yan, C.Z., Fan, H.W., Zheng, Y.C., Zhao, Y.J., Ning, F.L.: Simulation of the thermal shock of brittle materials using the finite-discrete element method. Eng. Anal. Bound. Elem. 115, 142–155 (2020)

    Article  MATH  Google Scholar 

  4. Qi, F., Meng, S.H., Song, F., Guo, H., Xu, X.H., Shao, Y.F., Chen, Y.: Fractal characterization of ceramic crack patterns after thermal shocks. J. Am. Ceram. Soc. 102(3), 3641–3652 (2019)

    Article  Google Scholar 

  5. Li, D.Y., Wang, R.Z., Wang, X.R., Li, W.G.: Simulation of the thermal shock cracking behaviors of ceramics under water quenching for 3-dimension conditions. Eur. J. Mech. A-Solid. 84, 104080 (2020)

    Article  Google Scholar 

  6. Babaei, M.H., Chen, T.: Hyperbolic heat conduction in a functionally graded hollow sphere. Int. J. Thermophys. 29(4), 1457–1469 (2008)

    Article  Google Scholar 

  7. Cattaneo, C.: Sur une forme de l’equation de la chaleur eliminant le paradoxe d’ine propagation instantanee. C. R. Acad. Sci. 247, 431–433 (1958)

    MATH  Google Scholar 

  8. Vernotte, P.: Les paradoxes de la theorie continue de l’equation de la chaleur. C. R. Acad. Sci. 246(22), 3154–3155 (1958)

    MATH  Google Scholar 

  9. Guo, S.L., Zhang, Y.X., Wang, K.F., Wang, B.L., Zhang, C.W.: Effects of non-Fourier heat conduction and surface heating rate on thermoelastic waves in semi-infinite ceramics subject to thermal shock. Ceram. Int. 47(12), 17494–17501 (2021)

    Article  Google Scholar 

  10. Shi, X.Y., Shang, X.C.: Transient response of thermoelastic hollow sphere under thermal shocks. J. Therm. Stresses. 37(6), 707–726 (2014)

    Article  Google Scholar 

  11. Yin, Y.F., Li, M., Li, Y.H., Song, J.Z.: Skin pain sensation of epidermal electronic device/skin system considering non-Fourier heat conduction. J. Mech. Phys. Solids. 138, 103927 (2020)

    Article  Google Scholar 

  12. Taati, E., Najafabadi, M.M., Reddy, J.N.: Size-dependent generalized thermoelasticity model for Timoshenko micro-beams based on strain gradient and non-Fourier heat conduction theories. Compos. Struct. 116, 595–611 (2014)

    Article  Google Scholar 

  13. Talaee, M.R., Atefi, G.: Non-Fourier heat conduction in a finite hollow cylinder with periodic surface heat flux. Arch. Appl. Mech. 81(12), 1793–1806 (2011)

    Article  MATH  Google Scholar 

  14. Najafabadi, M.M., Ahmadian, M.T., Taati, E.: Effect of thermal wave propagation on thermoelastic behavior of functionally graded materials in a slab symmetrically surface heated using analytical modeling. Compos. Part. B-Eng. 60, 413–422 (2013)

    Article  Google Scholar 

  15. He, S.Q., Peng, W., Ma, Y.B., He, T.H.: Investigation on the transient response of a porous half-space with strain and thermal relaxations. Eur. J. Mech. A-Solid. 84, 104064 (2020)

    Article  MATH  Google Scholar 

  16. Chang, D.M., Liu, X.F., Wang, B.L., An, Y.M., Wang, Q., Wang, T.G.: Non-Fourier thermal shock fracture of solids with shallow semi-elliptical surface crack. Theor. Appl. Fract. Mech. 96, 160–167 (2018)

    Article  Google Scholar 

  17. Li, W., Li, J., Song, F.: Biot number effect and non-Fourier effect on temperature field and stress intensity factor of a cracked strip under thermal shock loading. Eng. Fract. Mech. 228, 106923 (2020)

    Article  Google Scholar 

  18. Guo, S.L., Wang, B.L.: Thermal shock cracking behavior of a cylinder specimen with an internal penny-shaped crack based on non-Fourier heat conduction. Int. J. Thermophys. 37, 17 (2016)

    Article  Google Scholar 

  19. Zhang, X.Y., Chen, Z.T., Li, X.F.: Non-Fourier fractional heat conduction in two bonded dissimilar materials with a penny-shaped interface crack. Int. J. Therm. Sci. 140, 319–328 (2019)

    Article  Google Scholar 

  20. Guo, S.L., Wang, K.F., Wang, B.L.: Dual-phase-lagging heat conduction and associated thermal shock fracture of sandwich composite plates. Int. J. Heat. Mass. Tran. 139, 317–329 (2019)

    Article  Google Scholar 

  21. Li, W., Song, F., Li, J., Abdelmoula, R., Jiang, C.P.: Non-Fourier effect and inertia effect analysis of a strip with an induced crack under thermal shock loading. Eng. Fract. Mech. 162, 309–323 (2016)

    Article  Google Scholar 

  22. Kotousov, A., Zakavi, B., Khanna, A., Branco, R.: On the analysis of structures with cracks of elliptical and part-elliptical shapes. Theor. Appl. Fract. Mech. 98, 149–156 (2018)

    Article  Google Scholar 

  23. Pachoud, A.J., Manso, P.A., Schleiss, A.J.: Stress intensity factors for axial semi-elliptical surface cracks and embedded elliptical cracks at longitudinal butt welded joints of steel-lined pressure tunnels and shafts considering weld shape. Eng. Fract. Mech. 179, 93–119 (2017)

    Article  Google Scholar 

  24. Xiao, J.H., Xu, B.X., Xu, Y.L., Zhang, F.C.: Fracture analysis on a cracked elliptical hole with surface effect in magnetoelectroelastic solid. Theor. Appl. Fract. Mech. 107, 102532 (2020)

    Article  Google Scholar 

  25. Schapira, Y., Yosibash, Z.: Extracting edge flux intensity functions along an elliptical 3-D singular edge by the quasidual function method. Eng. Fract. Mech. 228, 106812 (2020)

    Article  Google Scholar 

  26. Guo, J.H., Li, X.F.: Surface effects on an electrically permeable elliptical nano-hole or nano-crack in piezoelectric materials under anti-plane shear. Acta. Mech. 229(10), 4251–4266 (2018)

    Article  MATH  Google Scholar 

  27. Li, X.Y., Zheng, R.F., Chen, W.Q., Kang, G.Z., Gao, C.F., Muller, R.: Three-dimensional exact magneto-electro-elastic field in an infinite transversely isotropic space with an elliptical crack under uniform loads: Shear mode. Int. J. Eng. Sci. 116, 104–129 (2017)

    Article  MATH  Google Scholar 

  28. Chang, D.M., Wang, B.L.: Thermal shock resistance of brittle ceramic materials with embedded elliptical cracks. Phil. Mag. Lett. 91(10), 648–655 (2011)

    Article  Google Scholar 

  29. Wang, B.L., Mai, Y.W.: Thermal shock fracture of piezoelectric materials. Phil. Mag. 83(5), 631–657 (2003)

    Article  Google Scholar 

  30. Zhang, Y.X., Wang, B.L.: Thermal shock resistance analysis of a semi-infinite ceramic foam. Int. J. Eng. Sci. 62, 22–30 (2013)

    Article  Google Scholar 

  31. Ozisik, M.N., Tzou, D.Y.: On the wave theory in heat conduction. J. Heat. Trans. 116, 526–535 (2004)

    Article  Google Scholar 

  32. Wang, B.L., Mai, Y.W.: Thermal shock fracture of piezoelectric materials. Philos. Mag. 83, 631 (2003)

    Article  Google Scholar 

  33. Fu, J.W., Chen, Z.T., Qian, L.F., Hu, K.Q.: Transient thermoelastic analysis of a solid cylinder containing a circumferential crack using the C-V heat conduction model. J. Therm. Stresses. 37, 1324–1345 (2014)

    Article  Google Scholar 

  34. Laham, Al.: Stress intensity factor and limit load handbook. British Energy Generation Ltd Publishing, London (1998)

    Google Scholar 

  35. Collin, M., Rowcliffe, D.: Analysis and prediction of thermal shock in brittle materials. Acta. Mater. 48, 1655–1665 (2000)

    Article  Google Scholar 

  36. Erdogan, F., Rizk, A.A.: Fracture of coated plates and shells under thermal-shock. Int. J. Fracture. 59, 159–185 (1992)

    Article  Google Scholar 

  37. Vodenitcharova, T., Zhang, L.C., Zarudi, I., Yin, Y., Domyo, H., Domyo, H., Sato, M.: The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks. J. Mater. Process. Tech. 194, 1–3 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Science Foundation of Tianjin (Grant Nos. 20JCYBJC00490, 20JCQNJC01070) for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, D., Liu, X., Jin, G. et al. Non-Fourier thermal shock resistance of the ceramic plate with an embedded elliptical crack. Arch Appl Mech 93, 773–784 (2023). https://doi.org/10.1007/s00419-022-02298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02298-9

Keywords

Navigation