Skip to main content
Log in

Novel boundary crack front elements with Williams' eigenexpansion properties for 3D crack analysis

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The new crack front elements with Williams' eigenexpansion properties for 3D crack problems are proposed in this paper. In the presented method, the dual boundary integral equations are collocated on the uncracked boundary and one of the crack surfaces. The unknowns of the integral equations may be displacements, tractions and crack open displacements on the crack faces. To characterize the Williams' eigenexpansion properties of displacements around the crack front, the crack front elements with Williams' eigenexpansion properties are developed. The construction method of these elements is based on the first order of the Williams' series eigenexpansion, and the two-point formula is used to construct the elements by using the crack surface opening displacement and the relationship between crack opening displacement and stress intensity factor. Several numerical examples are given to validate our method. The numerical results of the proposed method agree very well with those of other methods and exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cruse, T.A.: Boundary element analysis in computational fracture mechanics. Kluwer Academic Pub (1988)

  2. Aliabadi, M.H.: Boundary element formulations in fracture mechanics. Appl. Mech. Rev. 50, 83 (1997)

    Article  Google Scholar 

  3. Gu, Y., Zhang, C.Z.: Fracture analysis of ultra-thin coating/substrate structures with interface cracks. Int. J. Solids Struct. 225, 111074 (2021)

    Article  Google Scholar 

  4. Yao, Z.H., Zheng, X.P., Yuan, H., et al.: Research progress of high-performance BEM and investigation on convergence of GMRES in local stress analysis of slender real thin-plate beams. Eng. Comput. 36(8), 2530–2556 (2019)

    Article  Google Scholar 

  5. Lei, J., Wang, Y.S., Gross, D.: Two dimensional numerical simulation of crack kinking from an interface under dynamic loading by time domain boundary element method. Int. J. Solids Struct. 44(3–4), 996–1012 (2007)

    Article  MATH  Google Scholar 

  6. Rabczuk, T., Bordas, S., Zi, G.: On three-dimensional modelling of crack growth using partition of unity methods. Comput. Struct. 88(23–24), 1391–1411 (2010)

    Article  Google Scholar 

  7. Nguyen, V.P., Stroeven, M., Sluys, L.J.: Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J. Multiscale Model. 3(04), 229–270 (2011)

    Article  Google Scholar 

  8. Rabczuk, T., Zi, G., Bordas, S., et al.: A simple and robust three-dimensional cracking-particle method without enrichment. Comput. Methods Appl. Mech. Eng. 199(37–40), 2437–2455 (2010)

    Article  MATH  Google Scholar 

  9. Feng, S.Z., Han, X., Li, Z., et al.: Ensemble learning for remaining fatigue life prediction of structures with stochastic parameters: a data-driven approach. Appl. Math. Model. 101, 420–431 (2022)

    Article  MATH  Google Scholar 

  10. Wang, Q., Feng, Y.T., Zhou, W., et al.: A phase-field model for mixed-mode fracture based on a unified tensile fracture criterion. Comput. Methods Appl. Mech. Eng. 370, 113270 (2020)

    Article  MATH  Google Scholar 

  11. Feng, S.Z., Xu, Y., Han, X., et al.: A phase field and deep-learning based approach for accurate prediction of structural residual useful life. Comput. Methods Appl. Mech. Eng. 383, 113885 (2021)

    Article  MATH  Google Scholar 

  12. Chen, S., Wang, W., Zhao, X.: An interpolating element-free Galerkin scaled boundary method applied to structural dynamic analysis. Appl. Math. Model. 75, 494–505 (2019)

    Article  MATH  Google Scholar 

  13. Li, G., Xu, F., Sun, G., et al.: Identification of mechanical properties of the weld line by combining 3D digital image correlation with inverse modeling procedure. Int. J. Adv. Manuf. Technol. 74(5), 893–905 (2014)

    Article  Google Scholar 

  14. Agathos, K., Bordas, S.P.A., Chatzi, E.: Improving the conditioning of XFEM/GFEM for fracture mechanics problems through enrichment quasi-orthogonalization. Comput. Methods Appl. Mech. Eng. 346, 1051–1073 (2019)

    Article  MATH  Google Scholar 

  15. Agathos, K., Ventura, G., Chatzi, E., et al.: Well conditioned extended finite elements and vector level sets for three-dimensional crack propagation. In: Geometrically Unfitted Finite Element Methods and Applications, pp. 307–329. Springer, Cham (2017)

    MATH  Google Scholar 

  16. Agathos, K., Chatzi, E., Bordas, S.: Multiple crack detection in 3D using a stable XFEM and global optimization. Comput. Mech. 62(4), 835–852 (2018)

    Article  MATH  Google Scholar 

  17. Nguyen, V.P., Simpson, R.N., Bordas, S., et al.: An introduction to Isogeometric Analysis with Matlab implementation: FEM and XFEM formulations. arXiv preprint arXiv:1205.2129, p. 26 (2012)

  18. Agathos, K., Chatzi, E., Bordas, S.P.A.: Stable 3D extended finite elements with higher order enrichment for accurate non planar fracture. Comput. Methods Appl. Mech. Eng. 306, 19–46 (2016)

    Article  MATH  Google Scholar 

  19. Agathos, K., Chatzi, E., Bordas, S.P.A., et al.: A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture. Int. J. Numer. Methods Eng. 105(9), 643–677 (2016)

    Article  Google Scholar 

  20. Agathos, K., Ventura, G., Chatzi, E., et al.: Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes. Int. J. Numer. Methods Eng. 113(2), 252–276 (2018)

    Article  Google Scholar 

  21. Agathos, K., Chatzi, E., Bordas, S.P.A., et al.: Extended finite element methods with global enrichment. Int. J. Numer. Methods Eng. 105(9), 1–81 (2015)

    Google Scholar 

  22. Menk, A., Bordas, S.P.A.: A robust preconditioning technique for the extended finite element method. Int. J. Numer. Methods Eng. 85(13), 1609–1632 (2011)

    Article  MATH  Google Scholar 

  23. Sutula, D., Kerfriden, P., Van Dam, T., et al.: Minimum energy multiple crack propagation. Part I: theory and state of the art review. Eng. Fract. Mech. 191, 205–224 (2018)

    Article  Google Scholar 

  24. Sutula, D., Kerfriden, P., Van Dam, T., et al.: Minimum energy multiple crack propagation. Part-II: discrete solution with XFEM. Eng. Fract. Mech. 191, 225–256 (2018)

    Article  Google Scholar 

  25. Sutula, D., Kerfriden, P., Van Dam, T., et al.: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications. Eng. Fract. Mech. 191, 257–276 (2018)

    Article  Google Scholar 

  26. Giner, E., Tur, M., Tarancón, J.E., et al.: Crack face contact in X-FEM using a segment-to-segment approach. Int. J. Numer. Methods Eng. 82(11), 1424–1449 (2010)

    Article  MATH  Google Scholar 

  27. Kosec, G., Slak, J., Depolli, M., et al.: Weak and strong from meshless methods for linear elastic problem under fretting contact conditions. Tribol. Int. 138, 392–402 (2019)

    Article  Google Scholar 

  28. Slak, J., Kosec, G.: Medusa: A c++ library for solving pdes using strong form mesh-free methods. ACM Trans. Math. Softw. (TOMS) 47(3), 1–25 (2021)

    Article  MATH  Google Scholar 

  29. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    Article  MATH  Google Scholar 

  30. Atluri, S.N., Zhu, T.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998)

    Article  MATH  Google Scholar 

  31. Liu, G.R., Gu, Y.T.: A point interpolation method for two-dimensional solids. Int. J. Numer. Methods Eng. 50(4), 937–951 (2001)

    Article  MATH  Google Scholar 

  32. Depolli, M., Slak, J., Kosec, G.: Parallel domain discretization algorithm for RBF-FD and other meshless numerical methods for solving PDEs. Comput. Struct. 264, 106773 (2022)

    Article  Google Scholar 

  33. Jančič, M., Slak, J., Kosec, G.: p-refined RBF-FD solution of a Poisson problem. In: 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech). IEEE, pp. 01–06 (2021)

  34. Jacquemin, T., Tomar, S., Agathos, K., et al.: Taylor-series expansion based numerical methods: a primer, performance benchmarking and new approaches for problems with non-smooth solutions. Arch. Comput. Methods Eng. 27(5), 1465–1513 (2020)

    Article  Google Scholar 

  35. Jacquemin, T., Bordas, S.P.A.: A unified algorithm for the selection of collocation stencils for convex, concave, and singular problems. Int. J. Numer. Methods Eng. 122(16), 4292–4312 (2021)

    Article  Google Scholar 

  36. Nguyen, V.P., Rabczuk, T., Bordas, S., et al.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79(3), 763–813 (2008)

    Article  MATH  Google Scholar 

  37. de Vaucorbeil, A., Nguyen, V.P., Nguyen-Thanh, C.: Karamelo: an open source parallel C++ package for the material point method. Comput. Part. Mech. 8(4), 767–789 (2021)

    Article  Google Scholar 

  38. Rabczuk, T., Belytschko, T.: A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput. Methods Appl. Mech. Eng. 196(29–30), 2777–2799 (2007)

    Article  MATH  Google Scholar 

  39. Rabczuk, T., Bordas, S., Zi, G.: A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Comput. Mech. 40(3), 473–495 (2007)

    Article  MATH  Google Scholar 

  40. Bordas, S., Rabczuk, T., Zi, G.: Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Eng. Fract. Mech. 75(5), 943–960 (2008)

    Article  Google Scholar 

  41. de Vaucorbeil, A., Nguyen, V.P., Hutchinson, C.R.: A Total-Lagrangian Material Point Method for solid mechanics problems involving large deformations. Comput. Methods Appl. Mech. Eng. 360, 112783 (2020)

    Article  MATH  Google Scholar 

  42. de Vaucorbeil, A., Nguyen, V.P., Sinaie, S., et al.: Material point method after 25 years: theory, implementation, and applications. Adv. Appl. Mech. 53, 185–398 (2020)

    Article  Google Scholar 

  43. Wu, J.Y., Nguyen, V.P., Nguyen, C.T., et al.: Phase-field modeling of fracture. Adv. Appl. Mech. 53, 1–183 (2020)

    Article  Google Scholar 

  44. Wolf, J.P., Song, C.: The scaled boundary finite-element method–a primer: derivations. Comput. Struct. 78(1–3), 191–210 (2000)

    Article  Google Scholar 

  45. Song, C., Ooi, E.T., Natarajan, S.: A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics. Eng. Fract. Mech. 187, 45–73 (2018)

    Article  Google Scholar 

  46. Cheng, A.H.D., Cheng, D.T.: Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 29(3), 268–302 (2005)

    Article  MATH  Google Scholar 

  47. Frangi, A., Novati, G.: BEM–FEM coupling for 3D fracture mechanics applications. Comput. Mech. 32, 415–422 (2003)

    Article  MATH  Google Scholar 

  48. Peng, X., Atroshchenko, E., Kerfriden, P., et al.: Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment. Int. J. Fract. 204(1), 55–78 (2017)

    Article  Google Scholar 

  49. Peng, X., Atroshchenko, E., Kerfriden, P., et al.: Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth. Comput. Methods Appl. Mech. Eng. 316, 151–185 (2017)

    Article  MATH  Google Scholar 

  50. Beer, G., Marussig, B., Zechner, J., et al.: Boundary element analysis with trimmed NURBS and a generalized IGA approach. arXiv preprint arXiv:1406.3499 (2014)

  51. Marussig, B., Zechner, J., Beer, G., et al.: Fast isogeometric boundary element method based on independent field approximation. Comput. Methods Appl. Mech. Eng. 284, 458–488 (2015)

    Article  MATH  Google Scholar 

  52. Blandford, G.E., Ingraffea, A.R., Liggett, J.A.: Two-dimensional stress intensity factor computations using the boundary element method. Int. J. Numer. Methods Eng. 17(3), 387–404 (1981)

    Article  MATH  Google Scholar 

  53. Frangi, A.: Fracture propagation in 3D by the symmetric Galerkin boundary element method. Int. J. Fract. 116(4), 313–330 (2002)

    Article  Google Scholar 

  54. Crouch, S.L., Starfield, A.M.: Boundary element methods in solid mechanics: with applications in rock mechanics and geological engineering. Allen and Unwin. INC., 9 Winchester Terrace, Winchester (1982)

  55. Li, S., Mear, M.E., Xiao, L.: Symmetric weak-form integral equation method for three-dimensional fracture analysis. Comput. Methods Appl. Mech. Eng. 151(3), 435–459 (1998)

    Article  MATH  Google Scholar 

  56. Frangi, A., Novati, G., Springhetti, R., et al.: 3D fracture analysis by the symmetric Galerkin BEM. Comput. Mech. 28(3–4), 220–232 (2002)

    Article  MATH  Google Scholar 

  57. Zhou, W., Liu, B., Wang, Q., et al.: Formulations of displacement discontinuity method for crack problems based on boundary element method. Eng. Anal. Bound. Elem. 115, 86–95 (2020)

    Article  MATH  Google Scholar 

  58. Hong, H.K., Chen, J.T.: Derivations of integral equations of elasticity. J. Eng. Mech. 114(6), 1028–1044 (1988)

    Google Scholar 

  59. Mi, Y., Aliabadi, M.H.: Dual boundary element method for three-dimensional fracture mechanics analysis. Eng. Anal. Bound. Elem. 10(2), 161–171 (1992)

    Article  Google Scholar 

  60. Mi, Y.: Three-dimensional analysis of crack growth, vol. 28. Computational Mechanics Publications (1996)

  61. Pan, E., Yuan, F.G.: Boundary element analysis of three-dimensional cracks in anisotropic solids. Int. J. Numer. Methods Eng. 48(2), 211–237 (2000)

    Article  MATH  Google Scholar 

  62. Gu, Y., Zhang, C.Z.: Novel special crack-tip elements for interface crack analysis by an efficient boundary element method. Eng. Fract. Mech. 239, 107302 (2020)

    Article  Google Scholar 

  63. Cisilino, A.P., Aliabadi, M.H.: Dual boundary element assessment of three-dimensional fatigue crack growth. Eng. Anal. Boundary Elem. 28(9), 1157–1173 (2004)

    Article  MATH  Google Scholar 

  64. Yang, Y., Cheng, C., Yao, S., et al.: Singularity analysis for the V-notch in functionally graded piezoelectric/piezomagnetic material. J. Eng. Math. 132(1), 1–16 (2022)

    Article  MATH  Google Scholar 

  65. Chen, J.T., Hong, H.K.: Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series. Appl. Mech. Rev. 52(1), 17–33 (1999)

    Article  Google Scholar 

  66. Purbolaksono, J., Dirgantara, T., Aliabadi, M.H.: Fracture mechanics analysis of geometrically nonlinear shear deformable plates. Eng. Anal. Boundary Elem. 36(2), 87–92 (2012)

    Article  MATH  Google Scholar 

  67. Cisilino, A.P., Aliabadi, M.H., Otegui, J.L.: A three-dimensional boundary element formulation for the elastoplastic analysis of cracked bodies. Int. J. Numer. Methods Eng. 42(2), 237–256 (2015)

    Article  MATH  Google Scholar 

  68. Aliabadi, M.H., Hall, W.S., Phemister, T.G.: Taylor expansions for singular kernels in the boundary element method. Int. J. Numer. Methods Eng. 21(12), 2221–2236 (1985)

    Article  MATH  Google Scholar 

  69. Lei, W., Li, H., Qin, X., et al.: Dynamics-based analytical solutions to singular integrals for elastodynamics by time domain boundary element method. Appl. Math. Model. 56, 612–625 (2018)

    Article  MATH  Google Scholar 

  70. Mi, Y., Aliabadi, M.H.: Discontinuous crack-tip elements: application to 3D boundary element method. Int. J. Fract. 67(3), 67–71 (1994)

    Article  Google Scholar 

  71. Bains, R., Aliabadi, M.H., Rooke, D.P.: Fracture mechanics weight functions in three dimensions: subtraction of fundamental fields. Int. J. Numer. Methods Eng. 35(1), 179–202 (1992)

    Article  MATH  Google Scholar 

  72. Xie, G.Z., Zhang, D., Meng, F., et al.: Calculation of stress intensity factor along the 3D crack front by dual BIE with new crack front elements. Acta Mech. 228(9), 3135–3153 (2017)

    Article  MATH  Google Scholar 

  73. Xie, G.Z., Zhou, F.L., Zhang, D.H., et al.: Construction of special shape functions for triangular elements with one edge lying in the crack front. Eng. Anal. Bound. Elem. 105, 14–23 (2018)

    Article  MATH  Google Scholar 

  74. Cheng, C.Z., Yao, S.L., Sun, J.L., et al.: Singularity characteristic analysis for a V-notch in angularly heterogeneous moderately thick plate. Int. J. Mech. Sci. 115–116, 215–225 (2016)

    Article  Google Scholar 

  75. Li, C., Niu, Z.R., Hu, Z.J., et al.: Effectiveness of the stress solutions in notch/crack tip regions by using extended boundary element method. Eng. Anal. Boundary Elem. 108, 1–13 (2019)

    Article  MATH  Google Scholar 

  76. Li, C., Niu, Z.R., Hu, B., et al.: Accuracy of the extended boundary element method analyzing the stress fields of v-notched/cracked structures. Chin. J. Solid Mech. 39(5), 539–551 (2018)

    Google Scholar 

  77. Tada, H., Paris, P.C., Irwin, G.R., et al.: The Stress Analysis of Cracks Handbook. ASME Press, New York (2000)

    Book  Google Scholar 

  78. Newman, J.C., Raju, I.S.: Analysis of surface cracks in finite plates under tension or bending loads. NASA Technical Paper, pp. 1578–1623 (1979)

  79. Raju, I.S., Newman, J.C.: Three dimensional finite-element analysis of finite-thickness fracture specimens. NASA TN D-8414 (1977)

  80. Murakami, Y.: NorioHasebe. Stress intensity factors handbook. Elsevier Science (2001)

Download references

Acknowledgements

Thanks to all authors for their help in writing and revising the paper. In addition, this work was partly supported by the National Natural Science Foundation of China (11602229 and 52075500), partly supported by key scientific and technological project of Henan Province (222102240077), and partly supported by the Natural Science Foundation of Henan Province (202300410505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yudong Zhong or Ke Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Xie, G., Wang, L. et al. Novel boundary crack front elements with Williams' eigenexpansion properties for 3D crack analysis. Arch Appl Mech 93, 745–760 (2023). https://doi.org/10.1007/s00419-022-02296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02296-x

Keywords

Navigation