Skip to main content
Log in

Analysis of thermoelectric viscoelastic wave characteristics in the presence of a continuous line heat source with memory dependent derivatives

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the present work, the definition of memory dependent derivative (MDD) heat transfer in an infinite solid body was used to investigate the problem of wave characteristics in an unbounded thermoelectric viscoelastic solid caused by a continuous line heat source in the presence of a uniform magnetic field. Both Laplace and Hankel transform strategies are used to acquire the widespread answer in a closed form. Analytical findings were obtained for the distribution within the medium of various fields such as temperature, displacement, and stresses. For the inversion of the Laplace transformations, a computational approach is used. The distributions of the numerical consequences of the non-dimensional considered bodily variables are represented graphically. Detailed comparative evaluation is represented thru the numerical outcomes to estimate the results of the kernels, time-delay and magnetic number on the behavior of all variable. The effect offers a concept to research main thermoelectric viscoelastic materials as any other type of pertinent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(\lambda ,\;\mu\) :

Lame' constants

\(\rho\) :

Density

t :

Time

T :

Absolute temperature

T o :

Reference temperature

\(u_{i}\) :

Components of displacement tensor

\(\sigma_{ij}\) :

Components of stress tensor

e :

Dilatation

\(e_{ij}\) :

Components of strain deviator tensor

\(S_{ij}\) :

Components of stress deviator tensor

\(\varepsilon_{ij}\) :

Components of strain tensor

E i :

Components of electric field vector

J i :

Components of electric density vector

H i :

Components of magnetic field intensity

\(\mu_{{\text{o}}}\) :

Magnetic permeability

\(\sigma_{{\text{o}}}\) :

Electric conductivity

\(s_{{\text{o}}}\) :

Seebeck coefficient

\(\pi_{{\text{o}}}\) :

Peltier coefficient

M :

Magnetic parameter

\(\varepsilon\) :

\(\frac{{\gamma T_{{\text{o}}} {\kern 1pt} k}}{{(\lambda + 2\mu )\kappa_{{\text{o}}} }},\) Thermoelastic coupling parameter

Q :

Strength of the heat source

\(k_{\text{o}}\) :

Thermal diffusivity

\(k\) :

Thermal conductivity

q i :

Components of heat flux vector

\(\alpha_{{\text{T}}}\) :

Coefficient of linear thermal expansion

\(K_{{\text{o}}}\) :

\(\lambda \; + (2/3)\,\mu ,\) Bulk modulus

\({\text{c}}_{{\text{o}}}^{{2}}\) :

\(K_{{\text{o}}} /\rho ,\) Longitudinal wave speed

\(C_{E}\) :

Specific heat at constant strain

\(\eta\) :

\( \rho C_{E} /k\)

\(\gamma\) :

\((3\lambda + 2\mu )\alpha_{{\text{T}}}\)

\(\delta (.)\) :

Dirac delta function

\(\delta_{ij}\) :

Kronecker’s delta

\(\Gamma (.)\) :

Gamma function

\(H(.)\) :

Heaviside unit step function

References

  1. Lord, H.W., Shulman, Y.A.: Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  2. Cattaneo, C.: A form of heat conduction equation, which eliminates the paradox of instantaneous propagation. Compt. Rend. 247(3), 431–433 (1948)

    Google Scholar 

  3. Vernotte, P.: Some possible complications in the phenomenon of thermal conduction. Compt. Rend. 252, 2190–2191 (1961)

    Google Scholar 

  4. Biot, M.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MATH  Google Scholar 

  5. Dhaliwal, R.S., Sherief, H.H.: Generalized thermoelasticity for anisotropic media. Quar. Appl. Math. 38(1), 1–8 (1980)

    Article  MATH  Google Scholar 

  6. Sherief, H.H.: Fundamental solution of generalized thermoelastic problem for short times. J. Therm. Stress. 9(2), 151–164 (1986)

    Article  Google Scholar 

  7. Ezzat, M.A., El-Karamany, A.S., Samaan, A.A., Zakaria, M.: The relaxation effects of the volume properties of viscoelastic material in generalized thermoelasticity with thermal relaxation. J. Therm. Stress. 26(7), 671–690 (2003)

    Article  Google Scholar 

  8. Sherief, H.H., Allam, M., El-Hagary, M.: Generalized theory of thermoviscoelasticity and a half-space problem. Int. J. Thermophys. 32(6), 1271–1295 (2011)

    Article  Google Scholar 

  9. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Thermo-viscoelastic materials with fractional relaxation operators. Appl. Math. Model. 39(23–24), 7499–7512 (2015)

    Article  MATH  Google Scholar 

  10. Ezzat, M.A., Lewis, R.W.: Two-dimensional thermo-mechanical fractional responses to biological tissue with rheological properties. Int. J. Numer. Meth. Heat Fluid Flow 32(6), 1944–1960 (2022)

    Article  Google Scholar 

  11. Ezzat, M.A.: Hyperbolic thermal-plasma wave propagation in semiconductor of organic material. Waves Rand. Compl. Media 32(1), 334–358 (2022)

    Article  MATH  Google Scholar 

  12. Ezzat, M.A.: Fractional thermo-viscoelasticity theory with and without energy dissipation. Waves Rand. Compl. Media 32(4), 1903–1922 (2022)

    Article  MATH  Google Scholar 

  13. Green, A., Lindsay, K.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  14. Mïller, I.: The coldness, a universal function in thermo-elastic solids. Arch. Rational. Mech. Anal. 41(5), 319–332 (1971)

    Article  Google Scholar 

  15. Ezzat, M.A.: Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions. Int. J. Eng. Sci. 33(14), 2011–2020 (1995)

    Article  MATH  Google Scholar 

  16. Sherief, H.H.: State space approach to thermoelasticity with two relaxation times. Int. J. Eng. Sci. 31(8), 1177–1189 (1993)

    Article  MATH  Google Scholar 

  17. El-Karamany, A.S., Ezzat, M.A.: Thermal shock problem in generalized thermo-viscoelasticty under four theories. Int. J. Eng. Sci. 42, 649–671 (2004)

    Article  MATH  Google Scholar 

  18. El-Karamany, A.S., Ezzat, M.A.: On the boundary integral formulation of thermo-viscoelasticity theory. Int. J. Eng. Sci. 40(17), 1943–1956 (2002)

    Article  MATH  Google Scholar 

  19. Ezzat, M.A.: State space approach to generalized magneto-thermoelasticity with two relaxation times in a medium of perfect conductivity. Int. J. Eng. Sci. 35(7), 741–752 (1997)

    Article  MATH  Google Scholar 

  20. Ezzat, M.A.: Fundamental solution in generalized magneto-thermoelasticity with two relaxation times for perfect conductor cylindrical region. Int. J. Eng. Sci. 42(13–14), 1503–1519 (2004)

    Article  MATH  Google Scholar 

  21. Povstenko, Y.Z.: Thermoelasticity that uses fractional heat conduction equation. J. Math. Sci. 162(2), 296–305 (2009)

    Article  Google Scholar 

  22. Sherief, H., El-Sayed, A.M.A., Abd El-Latief, A.M.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47(2), 269–275 (2010)

    Article  MATH  Google Scholar 

  23. Youssef, H.M.: Theory of fractional order generalized thermoelasticity. J. Heat Trans. ASME 132(6), 061301–061311 (2010)

    Article  Google Scholar 

  24. Ezzat, M.A.: Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Phys. B 405(19), 4188–4194 (2010)

    Article  Google Scholar 

  25. Ezzat, M.A.: Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Phys. B 406(1), 30–35 (2011)

    Article  Google Scholar 

  26. Kothari, S., Mukhopadhyay, S.A.: Problem on elastic half space under fractional order theory of thermoelasticity. J. Therm. Stress. 34(7), 724–739 (2011)

    Article  Google Scholar 

  27. Sherief, H., Abd El-Latief, A.M.: Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity. Int. J. Mech. Sci. 74(9), 185–189 (2013)

    Article  Google Scholar 

  28. Ezzat, M.A., El-Bary, A.A.: Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int. J. Therm. Sci. 108(10), 62–69 (2016)

    Article  Google Scholar 

  29. Bo, Y., Xiaoyun, J., Huanying, X.: A novel compact numerical method for solving the two dimensional non-linear fractional reaction-subdiffusion equation. Numer. Algor. 68(4), 923–950 (2015)

    Article  MATH  Google Scholar 

  30. Zhang, H., Xiaoyun, J., Xiu, Y.: A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem. Appl. Math. Comput. 320, 302–318 (2018)

    MATH  Google Scholar 

  31. Yu, Y.-J., Tian, X.-G., Tian, J.-L.: Fractional order generalized electro-magneto-thermo-elasticity. Eur. J. Mech. A/Solids 42, 188–202 (2013)

    Article  MATH  Google Scholar 

  32. Wang, J.L., Li, H.F.: Surpassing the fractional derivative: Concept of the memory-dependent derivative. Comp. Math. Appl. 62, 1562–1567 (2011)

    Article  MATH  Google Scholar 

  33. Yu, Y.-J., Hu, W., Tian, X.-G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81(3–4), 123–134 (2014)

    Article  MATH  Google Scholar 

  34. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermo-viscoelasticity with memory-dependent derivatives. Int. J. Mech. Sci. 89, 470–475 (2014)

    Article  Google Scholar 

  35. Ezzat, M.A., El-Bary, A.A.: Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature. J. Mech. Sci. Technol. 29(10), 4273–4279 (2015)

    Article  Google Scholar 

  36. Rowe, D.M.: Handbook of Thermoelectrics. CRC Press, Boca Raton (1995)

    Google Scholar 

  37. Shercliff, J.A.: Thermoelectric magnetohydrodynamics. J. Fluid Mech. 91, 231–251 (1979)

    Article  MATH  Google Scholar 

  38. Ezzat, M.A., Youssef, H.M.: Stokes’ first problem for an electro-conducting micropolar fluid with thermoelectric properties. Can. J. Phys. 88(1), 35–48 (2010)

    Article  Google Scholar 

  39. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.: Electro-thermoelasticity theory with memory-dependent derivative heat transfer. Int. J. Eng. Sci. 99(2), 22–38 (2016)

    Article  MATH  Google Scholar 

  40. Chandrasekharaiah, D., Nurthy, H.N.: Temperature-rate-dependent thermoelastic interactions due to a line heat source. Acta Mech. 89(1–4), 1–12 (1991)

    Article  Google Scholar 

  41. Dhaliwal, R.S., Majumdar, S.R., Wang, J.: Thermoelastic in an infinite solid due to a line heat source. Int. J. Math. Sci. 20(2), 323–334 (1997)

    Article  MATH  Google Scholar 

  42. Sherief, H.H., Hussein, E. M.: Fundamental solution of thermoelasticity with two relaxation times for an infinite spherically symmetric space. Z. Angew. Math. Phys. 68, Art 50, 1–14 (2017)

  43. Honig, G., Hirdes, U.: A method for the numerical inversion of Laplace transforms. J. Comput. Appl. Math. 10(1), 113–132 (1984)

    Article  MATH  Google Scholar 

  44. Ezzat, M.A.: Thermo-mechanical memory responses of biological viscoelastic tissue with variable thermal material properties. Int. J. Numer. Meth. Heat Fluid Flow 31(1), 548–569 (2020)

    Article  Google Scholar 

  45. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  46. Sherief, H.H., Hussein, E.M.: Contour integration solution for a thermoelastic problem of a spherical cavity. Appl. Math. Compu 320(3), 557–571 (2018)

    MATH  Google Scholar 

  47. Ezzat, M.A.: A novel model of fractional thermal and plasma transfer within a non-metallic plate. Smart Struct. Syst. 27(1), 73–87 (2021)

    Google Scholar 

  48. Thomas, L.: Fundamentals of Heat Transfer. Prentice-Hall Inc., Englewood Cliffs (1980)

    Google Scholar 

  49. Ezzat, M.A., El-Karamany, A.S.: The uniqueness and reciprocity theorems for generalized thermoviscoelasticity with two relaxation times. Int. J. Eng. Sci. 40(11), 1275–1284 (2002)

    Article  MATH  Google Scholar 

  50. Sherief, H.H., El-Hagary, M.A.: Fractional order theory of thermo-viscoelasticity and application. Mech. Time-Depen. Mater. 24(4), 179–195 (2020)

    Article  Google Scholar 

  51. Peng, W., Tian, L., He, T.: Dual-phase-lag thermoelastic diffusion analysis of a size-dependent microplate based on modified fractional-order heat conduction model. ZAMM (2022). https://doi.org/10.1002/zamm.202200124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy A. Ezzat.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzat, M.A., El-Bary, A.A. Analysis of thermoelectric viscoelastic wave characteristics in the presence of a continuous line heat source with memory dependent derivatives. Arch Appl Mech 93, 605–619 (2023). https://doi.org/10.1007/s00419-022-02287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02287-y

Keyword

Navigation