Skip to main content
Log in

Free vibration of simply supported piezoelectric plates containing a cylindrical cavity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The problem of a piezoelectric body with a cylindrical cavity is studied within the framework of the 3D exact equations of electro-elasticity theory using Hamilton’s principle. It is supposed that the plate has simply-supported, mechanical and short-circuit conditions with respect to the electric potential along all its lateral edge surfaces. The solution to the corresponding free vibration problems is determined numerically by 3D FEM with the help of programs and algorithms composed by the authors. This paper successfully identifies the hole (cavity) size, volume fraction and location in finite piezoelectric plates as well as the coupling effect between the mechanical and electrical fields on the natural frequencies. The numerical results that confirm the effectiveness of the proposed method for cavity identification in piezoelectric plates are presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sosa, H.: Plane problems in piezoelectric media with defects. Int. J. Solids Struct. 28, 491–505 (1991). https://doi.org/10.1016/0020-7683(91)90061-J

    Article  MATH  Google Scholar 

  2. Sosa, H., Khutoryansky, N.: New developments concerning piezoelectric materials with defects. Int J Solids Struct. 33(23), 3399–3414 (1996). https://doi.org/10.1016/0020-7683(95)00187-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Lu, P., Williams, F.W.: Green functions of piezoelectric material with an elliptic hole or inclusion. Int. J. Solids Struct. 35(7–8), 651–664 (1997). https://doi.org/10.1016/S0020-7683(97)89714-4

    Article  MATH  Google Scholar 

  4. Qin, H.: Green function and its application for a piezoelectric plate with various openings. Arch. Appl. Mech. 69, 134–144 (1999). https://doi.org/10.1007/s004190050210

    Article  Google Scholar 

  5. Dai, L., Guo, W., Wang, X.: Stress concentration at an elliptic hole in transversely isotropic piezoelectric solids. Int. J. Solids Struct. 43, 1818–1831 (2006). https://doi.org/10.1016/j.ijsolstr.2005.05.035

    Article  MATH  Google Scholar 

  6. Yanliang, D., Shuhong, L., Shijie, D., Yaniang, L.: Electro-elastic fields of piezoelectric materials with an elliptical hole under uniform internal shearing forces. Chin. J. Mech. Eng. 26(3), 454–461 (2013). https://doi.org/10.3901/CJME.2013.03.454

    Article  Google Scholar 

  7. Dai, M., Gao, C.F.: Perturbation solution of two arbitrarily-shaped holes in a piezoelectric solid. Int. J. Mech. Sci. 88, 37–45 (2014). https://doi.org/10.1016/j.ijmecsci.2014.06.015

    Article  Google Scholar 

  8. Qi, H., Fang, D., Yao, Z.: FEM analysis of electro-mechanical coupling effect of piezoelectric materials. Comput. Mater. Sci. 8, 283–290 (1997). https://doi.org/10.1016/S0927-0256(97)00041-4

    Article  Google Scholar 

  9. Wang, X., Zhou, Y., Zhou, W.: A novel hybrid finite element with a hole for analysis of plane piezoelectric medium with defects. Int. J. Solids Struct. 41, 7111–7128 (2004). https://doi.org/10.1016/j.ijsolstr.2004.06.012

    Article  MATH  Google Scholar 

  10. Zhou, Z.D., Zhao, S.X., Kuang, Z.B.: Stress and electric displacements analyses in piezoelectric media with an elliptic hole and a small crack. Int. J. Solids Struct. 42, 2803–2822 (2005). https://doi.org/10.1016/j.ijsolstr.2004.09.038

    Article  MATH  Google Scholar 

  11. Fesharaki, J.J., Golabi, S.: Effect of stiffness ratio of piezoelectric patches and plate on stress concentration reduction in a plate with a hole. Mech. Adv. Mater. Struct. 24(3), 253–259 (2017). https://doi.org/10.1080/15376494.2016.1139214

    Article  Google Scholar 

  12. Tiersten, H.F.: Linear piezoelectric plate vibrations. Plenum, New York (1969)

    Book  Google Scholar 

  13. Pan, E., Heyliger, P.R.: Free vibrations of simply supported and multilayered magneto-electro-elastic plates. J. Sound Vib. 252(3), 429–442 (2002). https://doi.org/10.1006/jsvi.2001.3693

    Article  Google Scholar 

  14. Askari Farsangi, M.A., Saidi, A.R., Batra, R.C.: Analytical solution for free vibration of moderately thick hybrid piezoelectric laminated plates. J. Sound Vib. 332(22), 5981–5998 (2013). https://doi.org/10.1016/j.jsv.2013.05.010

    Article  Google Scholar 

  15. Pietrzakowski, M.: Piezoelectric control of composite plate vibration: Effect of electric potential distribution. Composite Struct. 86(9), 948–954 (2008). https://doi.org/10.1016/j.compstruc.2007.04.023

    Article  Google Scholar 

  16. Heyliger, P., Saravanos, D.A.: Exact free-vibration analysis of laminated plates with embedded piezolecetric layers. J. Acoust. Soc. Am. 98(3), 1547–1557 (1995). https://doi.org/10.1121/1.413420

    Article  Google Scholar 

  17. Kamali, M.T., Shodja, H.M.: Three-dimensional free vibration analysis of multiphase piezocomposite structures. J. Eng. Mech. 132(8), 871–881 (2006). https://doi.org/10.1061/(ASCE)0733-9399(2006)132:8(871)

    Article  Google Scholar 

  18. Yang, J.: An introduction to the theory of piezoelectricty. Springer (2005)

    Google Scholar 

  19. Akbarov, S.D., Guz, A.N.: Mechanics of curved composites. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  20. Aylikci, F., Akbarov, S.D., Yahnioglu, N.: Buckling delamination of a PZT/Metal/PZT sandwich rectangular thick plate containing interface inner band cracks. Composite Struct. 202, 9–16 (2018). https://doi.org/10.1016/j.compstruct.2017.09.106

    Article  Google Scholar 

  21. Zienkiewicz, O.C., Taylor, R.L.: Finite element methods: basic formulation and linear problems. Mc Graw-Hill Book Company, Oxford (1989)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Yildiz Technical University Scientific Research Projects Coordination Unit. Project Number: FBA-2018-3255

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Babuscu Yesil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babuscu Yesil, U., Yahnioglu, N. Free vibration of simply supported piezoelectric plates containing a cylindrical cavity. Arch Appl Mech 92, 2665–2678 (2022). https://doi.org/10.1007/s00419-022-02207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02207-0

Keywords

Navigation