Skip to main content
Log in

Elastic field of a rotating cubic quasicrystal disk

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Owing to anisotropy in the phonon and phason fields, the analysis of the elastic problems in quasicrystals is more difficult than conventional crystals. A rotating cubic quasicrystal disk is considered. Due to the nature of cubic quasicrystals, the associated problem is not axisymmetric. The semi-inverse solution method is applied to derive the closed-form solution. Explicit expressions for the phonon and phason displacements and stresses are obtained. With reference to polar coordinates, the shear stress components of the phonon and phason fields vanish everywhere in the disk, and the radial and hoop stress components of the phonon and phason fields are independent of the angular coordinate \(\theta \). However, the radial and hoop displacements of the phonon and phason fields are related to the angular coordinate. The influence of the material properties on the distribution of the elastic fields is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984)

    Article  Google Scholar 

  2. Bindi, L., Steinhardt, P.J., Yao, N., Lu, P.J.: Natural quasicrystals. Science 324(5932), 1306–1309 (2009)

    Article  Google Scholar 

  3. Feng, Y.C., Lu, G., Withers, R.L.: An incommensurate structure with cubic point group symmetry in rapidly solidified V-Ni-Si alloy. J. Phys. Condens. Matter 1(23), 3695–3700 (1989)

    Article  Google Scholar 

  4. Wang, R., Qin, C., Lu, G., Feng, Y., Xu, S.: Projection description of cubic quasiperiodic crystals with phason strains. Acta Crystallogr. A 50(3), 366–375 (1994)

    Article  Google Scholar 

  5. Donnadieu, P.: Organization of defects in the first cubic approximant of the quasicrystal Al6Li3Cu. Philos. Mag. A 64(1), 97–110 (1991)

    Article  Google Scholar 

  6. Yang, W., Wang, R., Ding, D.H., Hu, C.: Linear elasticity theory of cubic quasicrystals. Phys. Rev. B 48(10), 6999–7002 (1993)

    Article  Google Scholar 

  7. Gao, Y.: Governing equations and general solutions of plane elasticity of cubic quasicrystals. Phys. Lett. A 373(8–9), 885–889 (2009)

    Article  Google Scholar 

  8. Zhou, W.M., Fan, T.Y.: Axisymmetric elasticity problem of cubic quasicrystal. Chin. Phys. 9(4), 294–303 (2000)

    Article  Google Scholar 

  9. Gao, Y., Ricoeur, A., Zhang, L.: Plane problems of cubic quasicrystal media with an elliptic hole or a crack. Phys. Lett. A 375(28), 2775–2781 (2011)

    Article  Google Scholar 

  10. Yang, L.Z., He, F.M., Gao, Y.: Finite element method for static problems of cubic quasicrystals. Acta Phys. Pol., A 126(2), 471–473 (2014)

    Article  Google Scholar 

  11. Yaslan, H.Ç.: Deriving fundamental solutions for equations of elastodynamics in three-dimensional cubic quasicrystals. Acta Phys. Pol., A 136(3), 474–478 (2019)

    Article  Google Scholar 

  12. Long, F., Li, X.-F.: Flamant problem of a cubic quasicrystal half-plane. Z. Angew. Math. Phys. 73, 110 (2022)

  13. Genta, G., Gola, M.: The stress distribution in orthotropic rotating disks. J. Appl. Mech. 48(3), 559–562 (1981)

    Article  Google Scholar 

  14. Yeh, K.Y., Han, R.P.S.: Analysis of high-speed rotating disks with variable thickness and inhomogeneity. J. Appl. Mech. 61, 186–191 (1994)

    Article  Google Scholar 

  15. Durodola, J., Attia, O.: Deformation and stresses in functionally graded rotating disks. Compos. Sci. Technol. 60(7), 987–995 (2000)

    Article  Google Scholar 

  16. Zhou, F., Ogawa, A.: Elastic solutions for a solid rotating disk with cubic anisotropy. J. Appl. Mech. 69(1), 81–83 (2002)

    Article  Google Scholar 

  17. Peng, X.L., Li, X.F.: Elastic analysis of rotating functionally graded polar orthotropic disks. Int. J. Mech. Sci. 60(1), 84–91 (2012)

    Article  Google Scholar 

  18. Yadav, T.P., Mukhopadhyay, N.K.: Quasicrystal: a low-frictional novel material. Cur. Opin. Chem. Eng. 19, 163–169 (2018)

    Article  Google Scholar 

  19. Fan, T.: Mathematical Theory of Elasticity of Quasicrystals and Its Applications (2011)

  20. Rochal, S.B., Lorman, V.L.: Anisotropy of acoustic-phonon properties of an icosahedral quasicrystal at high temperature due to phonon-phason coupling. Phys. Rev. B 62(2), 874–879 (2000)

    Article  Google Scholar 

  21. Li, X.F.: A general solution of elasto-hydrodynamics of two-dimensional quasicrystals. Philos. Mag. Lett. 91(4), 313–320 (2011)

    Article  Google Scholar 

  22. Li, X.F.: Elastohydrodynamic problems in quasicrystal elasticity theory and wave propagation. Philos. Mag. 93(13), 1500–1519 (2013)

    Article  Google Scholar 

  23. Bak, P.: Phenomenological theory of icosahedral incommensurate (“quasiperiodic’’) order in Mn–Al alloys. Phys. Rev. Lett. 54(14), 1517–1519 (1985)

    Article  Google Scholar 

  24. Lubensky, T.C., Ramaswamy, S., Toner, J.: Hydrodynamics of icosahedral quasicrystals. Phys. Rev. B 32, 7444–7452 (1985)

    Article  Google Scholar 

  25. Chernikov, M.A., Ott, H.R., Bianchi, A., Migliori, A., Darling, T.W.: Elastic moduli of a single quasicrystal of decagonal Al–Ni–Co: Evidence for transverse elastic isotropy. Phys. Rev. Lett. 80(2), 321–324 (1998)

    Article  Google Scholar 

  26. Rochal, S.B., Lorman, V.L.: Minimal model of the phonon-phason dynamics in icosahedral quasicrystals and its application to the problem of internal friction in the i-AlPdMn alloy. Phys. Rev. B 66, 144204 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-F. Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Here, the relationships between the stiffness constants in plane stress state and in a three-dimensional space are given below. For the former case, \(\sigma _{zz}\) and \(\tau _{zz}\) are equal to 0. By virtue of Eqs. (1) and (2), we can obtain

$$\begin{aligned} \sigma _{zz}&=C_{12}\left( \varepsilon _{xx}+\varepsilon _{yy}\right) +C_{11}\varepsilon _{zz}+R_{12}\left( w_{xx}+w_{yy}\right) +R_{11} w_{zz}=0 \end{aligned}$$
(A.1)
$$\begin{aligned} \tau _{zz}&=R_{12}\left( \varepsilon _{xx}+\varepsilon _{yy}\right) +R_{11}\varepsilon _{zz}+K_{12}\left( w_{xx}+w_{yy}\right) +K_{11}w_{zz}=0 \end{aligned}$$
(A.2)

From the above, we can get the expressions for \(\varepsilon _{zz}\) and \(w_{zz}\) as follows by solving Eqs. (A.1) and (A.2).

$$\begin{aligned} \varepsilon _{zz}&=-\frac{\left( K_{11}R_{12}-K_{12}R_{11}\right) \left( w_{xx}+w_{yy}\right) +\left( C_{12}K_{11}-R_{11}R_{12}\right) \left( \varepsilon _{xx}+\varepsilon _{yy}\right) }{\left( C_{11}K_{11}-R_{11} R_{11}\right) } \end{aligned}$$
(A.3)
$$\begin{aligned} w_{zz}&=\frac{\left( R_{11}R_{12}-C_{11}K_{12}\right) \left( w_{xx}+w_{yy}\right) +\left( R_{11}C_{12}-C_{11}R_{12}\right) \left( \varepsilon _{xx}+\varepsilon _{yy}\right) }{\left( C_{11}K_{11}-R_{11} R_{11}\right) } \end{aligned}$$
(A.4)

Then one substitutes the expressions for \(\varepsilon _{zz}\) and \(w_{zz}\) above into Eqs. (1) and (2) to derive Eqs. (4) and (5). In addition, \(\sigma _{yz},\sigma _{xz},\tau _{yz}\) and \(\tau _{xz}\) are equal to 0 in plane stress state. So the relationships between the stiffness constants in plane stress state and those in a three-dimensional space can be given as follows:

$$\begin{aligned} C_{11}^{*}&=C_{11}+\frac{2R_{11}R_{12}C_{12}-R_{12}^{2}C_{11} -C_{12}^{2}K_{11}}{C_{11}K_{11}-R_{11}R_{11}} \end{aligned}$$
(A.5)
$$\begin{aligned} C_{12}^{*}&=C_{12}+\frac{2R_{11}R_{12}C_{12}-R_{12}^{2}C_{11} -C_{12}^{2}K_{11}}{C_{11}K_{11}-R_{11}R_{11}} \end{aligned}$$
(A.6)
$$\begin{aligned} C_{44}^{*}&=C_{44} \end{aligned}$$
(A.7)
$$\begin{aligned} K_{11}^{*}&=K_{11}+\frac{2R_{11}R_{12}K_{12}-C_{11}K_{12}^{2} -R_{12}^{2}K_{11}}{C_{11}K_{11}-R_{11}R_{11}} \end{aligned}$$
(A.8)
$$\begin{aligned} K_{12}^{*}&=K_{12}+\frac{2R_{11}R_{12}K_{12}-C_{11}K_{12}^{2} -R_{12}^{2}K_{11}}{C_{11}K_{11}-R_{11}R_{11}} \end{aligned}$$
(A.9)
$$\begin{aligned} K_{44}^{*}&=K_{44} \end{aligned}$$
(A.10)
$$\begin{aligned} R_{11}^{*}&=R_{11}+\frac{R_{12}\left( R_{11}R_{12}-C_{11} K_{12}\right) -C_{12}\left( R_{12}K_{11}-R_{11}K_{12}\right) }{C_{11} K_{11}-R_{11}R_{11}} \end{aligned}$$
(A.11)
$$\begin{aligned} R_{12}^{*}&=R_{12}+\frac{R_{12}\left( R_{11}R_{12}-C_{11} K_{12}\right) -C_{12}\left( R_{12}K_{11}-R_{11}K_{12}\right) }{C_{11} K_{11}-R_{11}R_{11}} \end{aligned}$$
(A.12)
$$\begin{aligned} R_{44}^{*}&=R_{44} \end{aligned}$$
(A.13)

In other words, for plane stress state, the material constants with superscript asterisk can be determined by those for plane strain state. The results for plane strain state can be directly transformed to those for plane stress state through a direct substitution of their relationships. Due to this reason, we omit the asterisk.

Appendix B

The material constants in polar coordinates can be expressed in terms of those in Cartesian coordinates below

$$\begin{aligned} c_{rr}&=c_{\theta \theta }=\frac{1}{2}\kappa _{1}+\eta _{1}+h_{1}\cos 4\theta , \end{aligned}$$
(B.1)
$$\begin{aligned} c_{r\theta }&=\frac{1}{2}\kappa _{1}-\eta _{1}-h_{1}\cos 4\theta , \end{aligned}$$
(B.2)
$$\begin{aligned} c_{\theta s}&=-c_{rs}=h_{1}\sin 4\theta , \end{aligned}$$
(B.3)
$$\begin{aligned} c_{ss}&=\eta _{1}-h_{1}\cos 4\theta , \end{aligned}$$
(B.4)
$$\begin{aligned} r_{rr}&=r_{\theta \theta }=\frac{1}{2}\kappa _{2}+\eta _{2}+h_{2}\cos 4\theta , \end{aligned}$$
(B.5)
$$\begin{aligned} r_{r\theta }&=\frac{1}{2}\kappa _{2}-\eta _{2}-h_{2}\cos 4\theta , \end{aligned}$$
(B.6)
$$\begin{aligned} r_{\theta s}&=-r_{rs}=h_{2}\sin 4\theta , \end{aligned}$$
(B.7)
$$\begin{aligned} r_{ss}&=\eta _{2}-h_{2}\cos 4\theta , \end{aligned}$$
(B.8)
$$\begin{aligned} k_{rr}&=k_{\theta \theta }=\frac{1}{2}\kappa _{3}+\eta _{3}+h_{3}\cos 4\theta , \end{aligned}$$
(B.9)
$$\begin{aligned} k_{r\theta }&=\frac{1}{2}\kappa _{3}-\eta _{3}-h_{3}\cos 4\theta , \end{aligned}$$
(B.10)
$$\begin{aligned} k_{\theta s}&=-k_{rs}=h_{3}\sin 4\theta , \end{aligned}$$
(B.11)
$$\begin{aligned} k_{ss}&=\eta _{3}-h_{3}\cos 4\theta , \end{aligned}$$
(B.12)

where

$$\begin{aligned} h_{1}&=\frac{1}{4}\left( C_{11}^{*}-C_{12}^{*}-2C_{44}^{*}\right) ,\ \ \kappa _{1}=C_{11}^{*}+C_{12}^{*}, \end{aligned}$$
(B.13)
$$\begin{aligned} \eta _{1}&=\frac{1}{4}\left( C_{11}^{*}-C_{12}^{*}+2C_{44}^{*}\right) . \end{aligned}$$
(B.14)
$$\begin{aligned} h_{2}&=\frac{1}{4}\left( R_{11}^{*}-R_{12}^{*}-2R_{44}^{*}\right) ,\ \ \kappa _{2}=R_{11}^{*}+R_{12}^{*}, \end{aligned}$$
(B.15)
$$\begin{aligned} \eta _{2}&=\frac{1}{4}\left( R_{11}^{*}-R_{12}^{*}+2R_{44}^{*}\right) . \end{aligned}$$
(B.16)
$$\begin{aligned} h_{3}&=\frac{1}{4}\left( K_{11}^{*}-K_{12}^{*}-2K_{44}^{*}\right) ,\ \ \kappa _{3}=K_{11}^{*}+K_{12}^{*}, \end{aligned}$$
(B.17)
$$\begin{aligned} \eta _{3}&=\frac{1}{4}\left( K_{11}^{*}-K_{12}^{*}+2K_{44}^{*}\right) , \end{aligned}$$
(B.18)

The specific expressions for\(\ \bar{h}_{1},\) \(\bar{\kappa }_{1},\) \(\bar{\eta }_{1}\) are as follows

$$\begin{aligned} \bar{h}_{1}&=\frac{1}{4}\left( C_{11}-C_{12}-2C_{44}\right) ,\ \ \bar{\kappa }_{1}=C_{11}+C_{12}, \end{aligned}$$
(B.19)
$$\begin{aligned} \bar{\eta }_{1}&=\frac{1}{4}\left( C_{11}-C_{12}+2C_{44}\right) , \end{aligned}$$
(B.20)

where \(C_{11},\) \(C_{12},\) \(C_{44}\) represent three basic elastic parameters of cubic anisotropic materials.

The constants \(\bar{a}_{1},\) \(\bar{b}_{1},\) \(\bar{c}_{1}\) can be obtained by the following matrix equation

$$\begin{aligned} \left[ \begin{array}{ccc} 0 &{} \bar{h}_{1} &{} \bar{\eta }_{1}\\ 0 &{} \frac{1}{2}\bar{\kappa }_{1}+\bar{\eta }_{1} &{} \bar{h}_{1}\\ \bar{\kappa }_{1} &{} \bar{\kappa }_{1} &{} 0 \end{array} \right] \left\{ \begin{array}{c} \bar{a}_{1}\\ \bar{b}_{1}\\ \bar{c}_{1} \end{array} \right\} =\left\{ \begin{array}{c} 0\\ -\frac{1}{8}\rho \omega ^{2}a^{2}\\ \sigma _{0}+\frac{1}{4}a^{2}\rho \omega ^{2} \end{array} \right\} \end{aligned}$$
(B.21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, F., Li, XF. Elastic field of a rotating cubic quasicrystal disk. Arch Appl Mech 92, 2191–2205 (2022). https://doi.org/10.1007/s00419-022-02169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02169-3

Keywords

Navigation