Skip to main content
Log in

Iterative algorithm for the conformal mapping function from the exterior of a roadway to the interior of a unit circle

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In elastic mechanics, the complex function method proposed by Muskhelishvili can be used to solve the stress distribution of rock surrounding a roadway with an irregular cross-section. However, the solution of the conformal mapping function from the exterior of the roadway to the interior of the unit circle is a prerequisite, but it is difficult to obtain. In this study, based on the Riemann mapping theorem and the boundary correspondence principle, the conformal mapping function was approximated using a Laurent series with finite terms. Assuming that the polar angle of the two corresponding points on the image of the conformal mapping function and the boundary of the roadway cross-section are equal, an iterative algorithm for calculating the conformal mapping function is proposed using the least squares method, and the code was programmed by-using Python. Using the proposed algorithm, two conformal mapping functions were solved for roadways with irregular cross-sections in practical engineering projects, while the parameters and the error were examined. Simultaneously, the performance was analyzed statistically for curved and broken line boundaries. The analysis results has shown that the errors were concentrated on the corners of the roadway. In addition, it was observed that an excessively large number of sample points would not improve the accuracy, but will only extend the algorithm convergence time. When the series includes more terms, the accuracy will be higher and the convergence speed will be slower. However, statistical analysis has shown that the algorithm was converged rapidly, with convergence time of less than 10 ms. Finally, the effectiveness of the algorithm was verified by solving the stress distributions of the rock surrounding two roadways. The algorithm might be used to solve the conformal mapping function from the exterior of a roadway with an irregular cross-section to the interior of the unit circle in coal mines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Figure17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Muskhelishvili, N.I., Noordhoff, P.: Some Basic Problems of the Mathematical Heory of Elasticity, 4th edn. Cambridge University Press, Cambridge, UK (1953)

    Google Scholar 

  2. Qi, C., Fourie, A., Chen, Q., Dong, X.: Analytical solution for stress distribution around arbitrary stopes using evolutionary complex variable methods. Int. J. Geomech. (2019). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001499

    Article  Google Scholar 

  3. Dong, X., Karrech, A., Basarir, H., Elchalakani, M., Qi, C.: Analytical solution of energy redistribution in rectangular openings upon insitu rock mass alteration. Int. J. Rock Mech. Min. Sci. 106, 74–83 (2018). https://doi.org/10.1016/j.ijrmms.2018.04.014

    Article  Google Scholar 

  4. Fang, Q., Song, H., Zhang, D.: Complex variable analysis for stress distribution of an underwater tunnel in an elastic half plane. Int. J. Numer. Anal. Meth. Geomech. 39(16), 1821–2835 (2015). https://doi.org/10.1002/nag.2375

    Article  Google Scholar 

  5. Lu, A., Zhang, N., Wang, S., Zhang, X.: Analytical solution for a lined tunnel with arbitrary cross sections excavated in orthogonal anisotropic rock mass. Int. J. Geomech. (2017). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000912

    Article  Google Scholar 

  6. Zhao, G., Yang, S.: Analytical solutions for rock stress around square tunnels using complex variable theory. Int. J. Rock Mech. Min. Sci. 80, 302–307 (2015). https://doi.org/10.1016/j.ijrmms.2015.09.018

    Article  Google Scholar 

  7. Manh, H.T., Sulem, J., Subrin, D.: A closed-form solution for tunnels with arbitrary cross section excavated in elastic anisotropic ground. Rock Mech. Rock Eng. 48(1), 277–288 (2015). https://doi.org/10.1007/s00603-013-0542-0

    Article  Google Scholar 

  8. Feng, Q., Jiang, B.S., Zhang, Q., Wang, L.P.: Analytical elasto-plastic solution for stress and deformation of surrounding rock in cold region tunnels. Cold Reg. Sci. Technol. 108, 59–68 (2014). https://doi.org/10.1016/j.coldregions.2014.08.001

    Article  Google Scholar 

  9. Jafari, M., Jafari, M.: Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. Eur. J. Mech. A-solids 73, 212–223 (2018). https://doi.org/10.1016/j.euromechsol.2018.08.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu, M., Wu, S., Gao, Y., Ma, J., Wu, Q.: Analytical elastic stress solution and plastic zone estimation for a pressure relief circular tunnel using complex variable methods. Tunn. Undergr. Space Technol. 84, 381–398 (2019). https://doi.org/10.1016/j.tust.2018.11.036

    Article  Google Scholar 

  11. Kargar, A.R., Rahmannejad, R., Hajabasi, M.A.: The stress state around lined non-circular hydraulic tunnels below the water table using complex variable method. Int. J. Rock Mech. Min. Sci. 78, 207–216 (2015). https://doi.org/10.1016/j.ijrmms.2015.04.005

    Article  Google Scholar 

  12. Kargar, A.R., Rahmannejad, R., Hajabasi, M.A.: A semi-analytical elastic solution for stress field of lined non-circular tunnels at great depth using complex variable method. Int. J. Solids Struct. 51(6), 1475–1482 (2014). https://doi.org/10.1016/j.ijsolstr.2013.12.038

    Article  Google Scholar 

  13. Nagler, J.: Numerical conformal mapping method vs geometrical separation attitude: combustion motor chamber internal flow simulation. J. Therm. Stress. (2020). https://doi.org/10.1002/zamm.201900351

    Article  Google Scholar 

  14. Jafari, M., Jafari, M.: Effect of uniform heat flux on stress distribution around a triangular hole in anisotropic infinite plate. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik 41(6), 726–747 (2018). https://doi.org/10.1080/01495739.2018.1428504

    Article  Google Scholar 

  15. Aizhong, Lu., Wang, S., Zhang, X., Zhang, N.: Solution of the elasto-plastic interface of circular tunnels in Hoek-Brown media subjected to non-hydrostatic stress. Int. J. Rock Mech. Min. Sci. 106, 124–132 (2018). https://doi.org/10.1016/j.ijrmms.2018.04.013

    Article  Google Scholar 

  16. Wang, X., Schiavone, P.: Multicoated elastic inhomogeneities of arbitrary shape neutral to multiple fields. Math. Mech. Solids (2021). https://doi.org/10.1177/10812865211024694

    Article  Google Scholar 

  17. Alhejaili, W., Kao, C.: Numerical studies of the Steklov eigenvalue problem via conformal mappings. Appl. Math. Comput. 347, 785–802 (2019). https://doi.org/10.1016/j.amc.2018.11.048

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhu, D., Qian, Q., Zhou, Z., Xu, W.: New method for calculating mapping function of opening with complex shape. Chin. J. Rock Mech. Eng. 18(3), 279–282 (1999)

    Google Scholar 

  19. Lv, A., Wang, Q.: New method of determination for the mapping function of tunnel with arbitrary boundary using optimization techniques. Chin. J. Rock Mech. Eng. 14(3), 269–274 (1995)

    Google Scholar 

  20. Fan, G., Tang, D.: Determination of the mapping function for the exterior domain of a non-circular opening by means of the multiplication of three absolutely convergent series. Chin. J. Rock Mech. Eng. 12(3), 255–263 (1993)

    Google Scholar 

  21. Wang, R.: A method of conformal mapping and itscomputer implementation. J. Hohai Univ. 19(1), 86–89 (1991)

    Google Scholar 

  22. DeLillo, T.K., Elcrat, A.R., Pfalzgraff, J.A.: Numerical conformal mapping methods based on faber series. J. Comput. Appl. Math. 83(2), 205–236 (1997). https://doi.org/10.1016/s0377-0427(97)00099-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Gutknecht, M.H.: Numerical conformal mapping methods based on function conjugation. J. Comput. Appl. Math. 14(1–2), 31–77 (1986). https://doi.org/10.1016/0377-0427(86)90130-5

    Article  MathSciNet  MATH  Google Scholar 

  24. Challis, N.V., Burley, D.M.: A numerical method for conformal mapping. IMA J. Numer. Anal. 2(2), 169–181 (1982). https://doi.org/10.1093/imanum/2.2.169

    Article  MathSciNet  MATH  Google Scholar 

  25. Gopal, A., Trefethen, L.N.: Representation of conformal maps by rational functions. Numer. Math. 142, 359–382 (2019). https://doi.org/10.1007/s00211-019-01023-z

    Article  MathSciNet  MATH  Google Scholar 

  26. Nazem, A., Hossaini, M., Rahami, H., Bolghonabadi, R.: Optimization of conformal mapping functions used in developing closed-form solutions for underground structures with conventional cross sections. Int. J. Min. Geo-Eng. 49(1), 93–102 (2015). https://doi.org/10.22059/ijmge.2015.54633

    Article  Google Scholar 

  27. Nasser, M.M.S., Al-Shihri, F.A.A.: A fast boundary integral equation method for conformal mapping of multiply connected regions. SIAM J. Sci. Comput. 35(3), A1736–A1760 (2013). https://doi.org/10.1137/120901933

    Article  MathSciNet  MATH  Google Scholar 

  28. Badreddine, M., DeLillo, T.K., Sahraei, S.: A comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discret. Cont. Dyn. Syst. Ser. B 24(1), 5 (2019). https://doi.org/10.3934/dcdsb.2018100

    Article  MathSciNet  MATH  Google Scholar 

  29. Nasser, M.M.S.: Numerical conformal mapping onto the parabolic, elliptic and hyperbolic slit domains. Bull. Malaysian Math. Sci. Soc. 41(4), 2067–2087 (2018). https://doi.org/10.1007/s40840-017-0558-9

    Article  MathSciNet  MATH  Google Scholar 

  30. Brown, P.R., Porter, R.M.: Numerical conformal mapping to one-tooth gear-shaped domains and applications. Comput. Methods Funct. Theory 16(2), 319–345 (2016). https://doi.org/10.1007/s40315-015-0149-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhu, J., Yang, J., Shi, G., Wang, J., Cai, J.: Calculating method for conformal mapping from exterior of unit circle to exterior of cavern with arbitrary excavation cross-section. Rock Soil Mech. 35(1), 175–183 (2014). https://doi.org/10.16285/j.rsm.2014.01.025

    Article  Google Scholar 

  32. Huangfu, P., Wu, F., Guo, S., Xiong, Z.: A new method for calculating mapping function of external area of cavern with arbitrary shape based on searching points on boundary. Rock Soil Mech. 32(5), 11418–11424 (2011). https://doi.org/10.16285/j.rsm.2011.05.040

    Article  Google Scholar 

  33. Yuan, M., Peng, H., Lei, Y.: Applied symmetrical principle to solve schwarz-christoffel parameter problem. Proc. Jangjeon Math. Soc. 21(4), 599–616 (2018). https://doi.org/10.17777/pjms2017.28.4.599

    Article  MathSciNet  MATH  Google Scholar 

  34. Natarajan, S., Bordas, S., Mahapatra, D.R.: Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping. Int. J. Numer. Meth. Eng. 80(1), 103–134 (2009). https://doi.org/10.1002/nme.2589

    Article  MathSciNet  MATH  Google Scholar 

  35. Baddoo, J., Crowdy, D.G.: Periodic Schwarz-Christoffel mappings with multiple boundaries per period. Proc. Royal Soc. A-Math. Phys. Eng. Sci. (2019). https://doi.org/10.1098/rspa.2019.0225

    Article  MATH  Google Scholar 

  36. Chatterjee, S., Hadi, A.S.: Regression analysis by example. Int. Stat. Rev. 81(2), 308–308 (2013). https://doi.org/10.1111/insr.12020_2

    Article  Google Scholar 

  37. Fang, F., Chen, Y.: A new approach for credit scoring by directly maximizing the Kolmogorov–Smirnov statistic. Comput. Stat. Data Anal. 133, 180–194 (2019). https://doi.org/10.1016/j.csda.2018.10.004

    Article  MathSciNet  MATH  Google Scholar 

  38. Rojas-Lima, J.E., Dominguez-Pacheco, F.A., Hernandez-Aguilar, C., Hernandez-Simon, L.M., Cruz-Orea, A.: Kolmogorov-Smirnov test for statistical characterization of photopyroelectric signals obtained from maize seeds. Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-018-2462-4

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51774009, 52174105, 51874006, and 51904010), Key Research and Development Projects in Anhui Province (No. 202004a07020045), Anhui Provincial Natural Science Foundation (No. 2008085ME147).

Funding

National Natural Science Foundation of China, 51774009, Jucai Chang, 52174105, Jucai Chang, 51874006, Zhiqiang Yin, 51904010, Key Research and Development Projects in Anhui Province, 202004a07020045, Jucai Chang, Anhui Provincial Natural Science Foundation,2008085ME147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Chang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Chang, J., Pang, D. et al. Iterative algorithm for the conformal mapping function from the exterior of a roadway to the interior of a unit circle. Arch Appl Mech 92, 971–991 (2022). https://doi.org/10.1007/s00419-021-02087-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02087-w

Keywords

Navigation