Skip to main content
Log in

Buckling analysis of nanobeams with deformable boundaries via doublet mechanics

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Buckling analysis of nanobeams with deformable boundary conditions is researched within the framework of doublet mechanics. This theory is an alternative nanomechanics theory for continuum modeling of the granular micromaterials. Doublet mechanics theory takes into consideration the small size parameter due to dealing with also granular nanosized structures. In many studies, rigid supporting conditions are explored in the nanomechanical analysis of beams. Even though the supporting conditions are accepted as undeformable, it is not possible to provide the desired rigidity in practice. A few studies have been conducted to explore the effects of deformable boundaries. In the present work, Fourier sine series as well as Stokes’ transformation are utilized to attain the eigenvalue formulation and eigenvector characteristics of the problem. The combination of these two methods is a new approach in applied mechanics; at the same time, it is planned to create a bridge between rigid and deformable boundary conditions. By solving various examples, the accuracy of the proposed method has been tested and an excellent agreement has been achieved with the literature. In addition, the effect of the springs in the boundaries on the critical buckling load has been examined and given in a series of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ansari, R., Gholami, R., Sahmani, S.: Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83, 1439–1449 (2013)

    Article  MATH  Google Scholar 

  2. Jalaei, M., Civalek, O.: A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects. Compos. Struct. 220, 209–220 (2019)

    Article  Google Scholar 

  3. Kounadis, A.N., Mallis, J., Sbarounis, A.: Postbuckling analysis of columns resting on an elastic foundation. Arch. Appl. Mech. 75, 395–404 (2006)

    Article  MATH  Google Scholar 

  4. Jalaei, M., Civalek, O.: On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int. J. Eng. Sci. 143, 14–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, J.J., Li, C., Fan, X.L., Tong, L.H.: Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory. Appl. Math. Comput. 45, 65–84 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Demir, Ç., Civalek, Ö.: Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl. Math. Modell. 37(22), 9355–9367 (2013)

    Article  Google Scholar 

  7. Li, C., Liu, J.J., Cheng, M., Fan, X.L.: Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces. Compos. Part B Eng. 116, 153–169 (2017)

    Article  Google Scholar 

  8. Li, C., Yao, L.Q., Chen, W.Q., Li, S.: Comments on nonlocal effects in nano-cantilever beams. Int. J. Eng. Sci. 87, 47–57 (2015)

    Article  Google Scholar 

  9. Li, C.: A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries. Compos. Struct. 118, 607–621 (2014)

    Article  Google Scholar 

  10. Civalek, Ö., Uzun, B., Yaylı, M.O.: Stability analysis of nanobeams placed in electromagnetic field using a finite element method. Arab. J. Geosci. 13(21), 1–9 (2020)

    Article  Google Scholar 

  11. Uzun, B., Yaylı, M.O.: Nonlocal vibration analysis of Ti–6Al–4V/\(\text{ ZrO}_2\) functionally graded nanobeam on elastic matrix. Arab. J. Geosci. 13(21), 1–10 (2020)

    Google Scholar 

  12. Uzun, B., Civalek, Ö., Yaylı, M.Ö.: Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions. Mech. Based Des. Struct. Mach. 1–20 (2020)

  13. Arda, M.: Axial dynamics of functionally graded Rayleigh-Bishop nanorods. Microsyst. Technol. 27(1), 269–282 (2021)

    Article  Google Scholar 

  14. Karamanli A.: ‘Structural behaviours of zigzag and armchair nanobeams using finite element doublet mechanics’, European Journal of Mechanics-A/Solids, (2021), 104287

  15. Karamanli, A., Vo, T.P.: Bending, vibration, buckling analysis of bi-directional FG porous microbeams with a variable material length scale parameter. Appl. Math. Modell. 91, 723–748 (2021)

    Article  MathSciNet  Google Scholar 

  16. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M.: Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory. Comput. Concrete 26(5), 439–450 (2020)

    Google Scholar 

  17. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Adda Bedia, E.A., Mahmoud, S.R., Tounsi, A.: Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Comput. Concrete 26(3), 213–226 (2020)

    Google Scholar 

  18. Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., Adda Bedia, E.A., Tounsi, A.: A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells. Comput. Concrete 26(2), 185–201 (2020)

    Google Scholar 

  19. Bakoura, A., Bourada, F., Bousahla, A.A., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M., Mahmoud, S.R.: Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method. Comput. Concrete 27(1), 73–83 (2021)

    Google Scholar 

  20. She, G.L., Liu, H.B., Karami, B.: Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets. Thin-Walled Struct. 160, 107407 (2021)

    Article  Google Scholar 

  21. Sahmani, S., Aghdam, M.M., Rabczuk, T.: Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs. Compos. Struct. 198, 51–62 (2018)

    Article  Google Scholar 

  22. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Tornabene, F.: Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Aerosp. Sci. Technol. 81, 108–117 (2018)

    Article  Google Scholar 

  23. Nguyen, N.V., Nguyen, L.B., Nguyen-Xuan, H., Lee, J.: Analysis and active control of geometrically nonlinear responses of smart FG porous plates with graphene nanoplatelets reinforcement based on Bezier extraction of NURBS. Int. J. Mech. Sci. 180, 105692 (2020)

    Article  Google Scholar 

  24. Beni, Y.T.: Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling. Mech. Res. Commun. 75, 67–80 (2016)

    Article  Google Scholar 

  25. Kim, J., Żur, K.K., Reddy, J.N.: Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos. Struct. 209, 879–888 (2019)

    Article  Google Scholar 

  26. Żur, K.K., Arefi, M., Kim, J., Reddy, J.N.: Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos. Part B Eng. 182, 107601 (2020)

    Article  Google Scholar 

  27. Barretta, R., Faghidian, S.A., De Sciarra, F.M.: Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. Int. J. Eng. Sci. 136, 38–52 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zenkour, A.M.: Nonlocal elasticity and shear deformation effects on thermal buckling of a CNT embedded in a viscoelastic medium. Eur. Phys. J. Plus 133, 1–14 (2018)

    Article  Google Scholar 

  29. Arefi, M., Zenkour, A.M.: Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam. Acta Mech. 228(10), 3657–3674 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Arefi, M., Zenkour, A.M.: Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory. J. Sandwich Struct. Mater. 28(1), 2751–2778 (2019)

    Article  Google Scholar 

  31. Arefi, M., Zenkour, A.M.: Thermal stress and deformation analysis of a size-dependent curved nanobeam based on sinusoidal shear deformation theory. Alexandria Eng. J. 57(3), 2177–2185 (2018)

    Article  Google Scholar 

  32. Arefi, M., Zenkour, A.M.: Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory. J. Intell. Mater. Syst. Struct. 29(7), 1394–1406 (2018)

    Article  Google Scholar 

  33. Arefi, M., Zenkour, A.M.: Transient analysis of a three-layer microbeam subjected to electric potential. Int. J. Smart Nano Mater. 8(1), 20–40 (2017)

    Article  Google Scholar 

  34. Arefi, M., Zenkour, A.M.: Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenkos sandwich piezoelectric microbeam. J. Sandwich Struct. Mater. 21(4), 1243–1270 (2019)

    Article  Google Scholar 

  35. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Tornabene, F., Reddy, J.N.: Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations. Appl. Sci. 9(8), 1580 (2019)

    Article  Google Scholar 

  36. Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beam for the analysis of carbon nanotubes. J. Appl. Phys. 103, 1–16 (2008)

    Article  Google Scholar 

  37. Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro and nano-structures. Phys. Lett. A 363, 236–242 (2007)

    Article  Google Scholar 

  38. Yayli, M.O.: Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions. IET Micro Nano Lett. 11, 741–745 (2016)

    Article  Google Scholar 

  39. Yayli, M.O.: Buckling analysis of a cantilever single-walled carbon nanotube embedded in an elastic medium with an attached spring. IET Micro Nano Lett. 12, 255–259 (2017)

    Article  Google Scholar 

  40. Yayli, M.O., Yanik, F., Kandemir, S.Y.: Longitudinal vibration of nanorods embedded in an elastic medium with elastic restraints at both ends. IET Micro Nano Lett. 10, 641–644 (2015)

    Article  Google Scholar 

  41. Yayli, M.O.: On the axial vibration of carbon nanotubes with different boundary conditions. IET Micro Nano Lett. 9, 807–811 (2014)

    Article  Google Scholar 

  42. Yayli, M.O.: A compact analytical method for vibration analysis of single-walled carbon nanotubes with restrained boundary conditions. J. Vib. Control 22, 2542–2555 (2016)

    Article  MathSciNet  Google Scholar 

  43. Simsek, M.: Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Phys.-E Low-dimensional Syst. Nanostruct. 43, 182–191 (2010)

    Article  Google Scholar 

  44. Ece, M.C., Aydogdu, M.: Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190, 185–195 (2007)

    Article  MATH  Google Scholar 

  45. Aydogdu, M.: Axial vibration of the nanorods with the nonlocal continuum rod model. Phys.-E Low-dimensional Syst. Nanostruct. 41, 861–864 (2009)

    Article  Google Scholar 

  46. Yoon, J., Ru, C.Q., Mioduchowski, A.: Vibration of an embedded multiwall carbon nanotube. Compos. Sci. Technol. 63, 1533–1542 (2003)

    Article  Google Scholar 

  47. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  48. Koiter, W.T.: Couple stresses in the theory of elasticity I and II. Proc. K Ned. Akad Wet (B) 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  49. Toupin, R.A.: Theory of elasticity with couple stresses. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  Google Scholar 

  50. Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  MATH  Google Scholar 

  52. Eringen, A.C.: Theory of micropolar plates. Z. Angew. Math. Phys. 18, 12–30 (1967)

    Article  Google Scholar 

  53. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 1983(54), 4703–4710 (1983)

    Article  Google Scholar 

  54. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  55. Numanoglu, H.M., Akgoz, B., Civalek, O.: On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018)

    Article  Google Scholar 

  56. Gul, U., Aydogdu, M.: Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics. Compos. Part B Eng. 137, 60–73 (2018)

    Article  Google Scholar 

  57. Civalek, O., Dastjerdi, S., Akbas, S.D., Akgoz, B.: ’ Vibration Analysis of Carbon Nanotube-Reinforced Composite Microbeams.’, Mathematical Methods in the Applied Sciences, (2020). https://doi.org/10.1002/mma.7069

  58. Demir, C., Civalek, O.: On the analysis of microbeams. Int. J. Eng. Sci. 121, 14–33 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L.: Non-classical Timoshenko beam element based on the strain gradient elasticity theory. Finite Elements Anal. Des. 79, 22–39 (2014)

    Article  MathSciNet  Google Scholar 

  60. Civalek, O., Uzun, B., Yayli, M.O., Akgoz, B.: ’Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method.’, Eur. Phys. J. Plus , (2020), 135:381. https://doi.org/10.1140/epjp/s13360-020-00385-w

  61. Yayli, M.O.: Torsion of nonlocal bars with equilateral triangle cross sections. J. Comput. Theore. Nanosci. 10, 376–379 (2013)

    Article  Google Scholar 

  62. Yayli, M.O.: Weak formulation of finite element method for nonlocal beams using additional boundary conditions. J. Comput. Theore. Nanosci. 8, 2173–2180 (2011)

    Article  Google Scholar 

  63. Barretta, R., Canadija, M., de Sciarra, F.M.: A higher-order Eringen model for Bernoulli-Euler nanobeams. Arch. Appl. Mech. 87(11), 483–495 (2016)

    Article  MATH  Google Scholar 

  64. Jalaei, M., Civalek, O.: On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Arch. Appl. Mech. 143, 14–32 (2019)

    MathSciNet  MATH  Google Scholar 

  65. Arefi, M., Saeed, F., Bidgoli, E.M.R., Civalek, O.: Analysis of porous micro -plates reinforced with FG-GNPs based on Reddy plate theory. Compos. Struct. 247, 112391 (2020)

    Article  Google Scholar 

  66. Rahmani, O., Refaeinejad, V., Hosseini, S.A.H.: Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams. Steel Compos. Struct. 23(3), 339–350 (2017)

    Article  Google Scholar 

  67. Ebrahimi, F., Barati, M.R., Civalek, O.: Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36, 953–964 (2020)

    Article  Google Scholar 

  68. Arefi, M., Zenkour, A.M.: Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model. J. Intell. Mater. Syst. Struct. 28(17), 2403–2413 (2017)

    Article  Google Scholar 

  69. Zenkour, A.M.: A two-unknown nonlocal shear and normal deformations theory for buckling analysis of nanorods. J. Brazilian Soc. Mech. Sci. Eng. 42, 1–10 (2020)

    Article  Google Scholar 

  70. Zenkour, A.M., Sobhy, M.: ’Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams.’, Eng. Comput. (2021), pp. 1–17

  71. Zenkour, A.M., Radwan, A.F.: A nonlocal strain gradient theory for porous functionally graded curved nanobeams under different boundary conditions. Phys. Mesomech. 323, 601–615 (2020)

    Article  Google Scholar 

  72. Zenkour, A.M., Radwan, A.F.: A compressive study for porous FG curved nanobeam under various boundary conditions via a nonlocal strain gradient theory. Eur. Phys. J. Plus 136(2), 1–16 (2021)

    Article  Google Scholar 

  73. Sobhy, M., Zenkour, A.M.: The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations. Mech. Adv. Mater. Struct. 27(7), 525–538 (2020)

    Article  Google Scholar 

  74. Barati, M.R., Faleh, N.M., Zenkour, A.M.: Dynamic response of nanobeams subjected to moving nanoparticles and hygro-thermal environments based on nonlocal strain gradient theory. Mech. Adv. Mater. Struct. 26(19), 1661–1669 (2019)

    Article  Google Scholar 

  75. Fatahi-Vajari, A., Imam, A.: Axial vibration of single-walled carbon nanotubes using doublet mechanics. Indian J. Phys. 90(4), 447–455 (2016)

    Article  MATH  Google Scholar 

  76. Yayli, M.O.: A compact analytical method for vibration of micro-sized beams with different boundary conditions. Mech. Adv. Mater. Struct. 24, 496–508 (2016)

    Article  Google Scholar 

  77. Yayli, M.O.: Free vibration behavior of a gradient elastic beam with varying cross section. Shock Vib. 801696,(2014)

  78. Gul, U., Aydogdu, M.: Structural modelling of nanorods and nanobeams using doublet mechanics theory. Int. J. Mech. Mater. Des. 14, 195–212 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Busra Uzun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civalek, Ö., Uzun, B. & Yayli, M.Ö. Buckling analysis of nanobeams with deformable boundaries via doublet mechanics. Arch Appl Mech 91, 4765–4782 (2021). https://doi.org/10.1007/s00419-021-02032-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02032-x

Keywords

Navigation