Skip to main content
Log in

Fourth-order tensor algebraic operations and matrix representation in continuum mechanics

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a system of cyclic tensor algebra for operations involving fourth-order tensors. The advantages are that the system is objectively and consistently defined in three ways that each fall into one of three universal classes. Operators within a given class are called conjugate operators such that many familiar and fundamental identities of scalars and second-order tensors are maintained in fourth order; this provides greater insight along with anthropological and pedagogical advantages over current systems, while also revealing new identities and solutions. The relationship between operators of a different class is such that a property of cyclic symmetry arises whereby mixed-class product operators can be cycled around without invalidating an equation. In defining this system, we have considered the following: preservation from identities in zeroth- (scalar) and second-order tensor identities to fourth-order tensor identities; possible permutations of definitions and subsequent logical restrictions; the visual notational consistency throughout the system; and maintenance to legacy definitions and operator symbols. Additionally, we present many new and useful algebraic identities and provide a comparison to some selected contemporary systems used in the literature. We also provide, to complete at least a basic exposition of our proposed system, a set of identities for matrix-equivalent operations, which facilitate programming for numerical computing. This article is designed to be used as a reference work for anyone choosing to adopt this system of tensor operations in continuum mechanics theory involving fourth-order tensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Author’s note: we put exhaustive effort into maintaining this consistency, and it required the re-definition of the circledot operator for the tensor product.

  2. Note that Itskov’s circledot is our circlestar for previously detailed reasons.

  3. Having chosen the right-handed rather than the left-handed definitions (not to be confused with left and right contractions).

References

  1. Thomson, W., Lord Kelvin, A.K.A.: Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc. Lond. 146, 481–498 (1856). https://doi.org/10.1098/rstl.1856.0022

    Article  Google Scholar 

  2. Cardoso, J. F.: Eigen-structure of the fourth-order cumulant tensor with application to the blind source separation problem. In: Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International Conference on, 3–6 Apr 1990 1990. Pp. 2655–2658 vol. 2655. https://doi.org/10.1109/ICASSP.1990.116165

  3. Penrose, R.: A spinor approach to general relativity. Ann. Phys. 10(2), 171–201 (1960). https://doi.org/10.1016/0003-4916(60)90021-X

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, Y., Qi, L., Zhang, X.: A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numer. Linear Algebra Appl. 16(7), 589–601 (2009). https://doi.org/10.1002/nla.633

    Article  MathSciNet  MATH  Google Scholar 

  5. Lubarda, V.A., Krajcinovic, D.: Damage tensors and the crack density distribution. Int. J. Solids Struct. 30(20), 2859–2877 (1993). https://doi.org/10.1016/0020-7683(93)90158-4

    Article  MATH  Google Scholar 

  6. Zysset, P.K., Curnier, A.: An alternative model for anisotropic elasticity based on fabric tensors. Mech. Mater. 21(4), 243–250 (1995). https://doi.org/10.1016/0167-6636(95)00018-6

    Article  Google Scholar 

  7. Peyraut, F., Renaud, C., Labed, N., Feng, Z.-Q.: Modélisation de tissus biologiques en hyperélasticité anisotrope - Étude théorique et approche éléments finis. C. R. Mécan. 337(2), 101–106 (2009). https://doi.org/10.1016/j.crme.2009.03.007

    Article  MATH  Google Scholar 

  8. Theocaris, P.S., Sokolis, D.P.: Spectral decomposition of anisotropic elasticity. Acta Mech. 150(3–4), 237–261 (2001). https://doi.org/10.1007/Bf01181814

    Article  MATH  Google Scholar 

  9. Holzapfel, G.A., Gasser, T.C.: A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Eng. 190(34), 4379–4403 (2001). https://doi.org/10.1016/S0045-7825(00)00323-6

    Article  Google Scholar 

  10. Jayachandra, M.R., Rehbein, N., Herweh, C., Heiland, S.: Fiber tracking of human brain using fourth-order tensor and high angular resolution diffusion imaging. Magn. Reson. Med. 60(5), 1207–1217 (2008). https://doi.org/10.1002/mrm.21775

    Article  Google Scholar 

  11. Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized positive-definite fourth order tensor field estimation from DW-MRI. Neuroimage 45(1, Supplement 1), S153–S162 (2009). https://doi.org/10.1016/j.neuroimage.2008.10.056

    Article  Google Scholar 

  12. Ghosh, A., Descoteaux, M., Deriche, R.: Riemannian framework for estimating symmetric positive definite 4th order diffusion tensors. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008, vol 5241. Lecture Notes in Computer Science, pp. 858–865. Springer, Berli (2008). https://doi.org/10.1007/978-3-540-85988-8_102

  13. Ebbing, V., Schröder, J., Neff, P.: Construction of polyconvex energies for non-trivial anisotropy classes. In: Poly-, Quasi-and Rank-One Convexity in Applied Mechanics, pp. 107–130. Springer (2010)

  14. del Piero, G.: Some properties of the set of fourth-order tensors, with application to elasticity. J. Elast. 9(3), 245–261 (1978). https://doi.org/10.1007/BF00041097

    Article  MathSciNet  MATH  Google Scholar 

  15. Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers: With Applications to Continuum Mechanics. Mathematical Engineering, 3rd edn. Springer, Berlin (2013)

    Book  Google Scholar 

  16. Itskov, M.: On the theory of fourth-order tensors and their applications in computational mechanics. Comput. Methods Appl. Mech. Eng. 189(2), 419–438 (2000)

    Article  MathSciNet  Google Scholar 

  17. Dui, G., Wang, Z., Ren, Q.: Explicit formulations of tangent stiffness tensors for isotropic materials. Int. J. Numer. Meth. Eng. 69(4), 665–675 (2007). https://doi.org/10.1002/nme.1776

    Article  MathSciNet  MATH  Google Scholar 

  18. Rivlin, R.S.: Large elastic deformations of isotropic materials. I. Fundamental concepts. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 240(822), 459–490 (1948). https://doi.org/10.2307/91430

    Article  MathSciNet  MATH  Google Scholar 

  19. Ogden, R.W.: Non-Linear Elastic Deformations. Courier Dover Publications (1997)

    Google Scholar 

  20. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: The Non-linear Field Theories of Mechanics, pp. 1–579. Springer (2004)

  21. Truesdell, C., Toupin, R.: The Classical Field Theories. Encyclopedia of Physics. Vol III/1 S. Flugge (ed), pp. 226–793. Springer, Berlin (1960)

    Google Scholar 

  22. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Bull. Am. Math. Soc. 19(1913), 242–246 (1913)

    MATH  Google Scholar 

  23. Eringen, A.: Theory of Micropolar Elasticity DTIC. DTIC Document (1967)

  24. Eringen, A.C.: Simple Microfluids (1963)

  25. Kellermann, D.C., Attard, M.M.: An invariant-free formulation of neo-Hookean hyperelasticity. ZAMM-J. Appl. Math. Mech. 96(2), 233–252 (2016)

    Article  MathSciNet  Google Scholar 

  26. Neff, P., Jeong, J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. Zamm-Z. Angew. Math. Me 89(2), 107–122 (2009). https://doi.org/10.1002/zamm.200800156

    Article  MathSciNet  MATH  Google Scholar 

  27. Neff, P., Munch, I.: Simple shear in nonlinear Cosserat elasticity: bifurcation and induced microstructure. Continuum Mech. Therm. 21(3), 195–221 (2009). https://doi.org/10.1007/s00161-009-0105-5

    Article  MathSciNet  MATH  Google Scholar 

  28. Knowles, J.K.: On the representation of the elasticity tensor for isotropic materials. J. Elast. 39(2), 175–180 (1995). https://doi.org/10.1007/Bf00043415

    Article  MathSciNet  MATH  Google Scholar 

  29. Kelly, P.: Foundations of continuum mechanics. In: Kelly, P. (ed) Mechanics Lecture Notes, vol III. The University of Auckland, Auckland (2013)

  30. Kintzel, O., Başar, Y.: Fourth-order tensors–tensor differentiation with applications to continuum mechanics. Part I: classical tensor analysis. ZAMM 86(4), 291–311 (2006)

    Article  MathSciNet  Google Scholar 

  31. Kintzel, O.: Fourth-order tensors–tensor differentiation with applications to continuum mechanics. Part II: tensor analysis on manifolds. ZAMM 86(4), 312–334 (2006)

    Article  MathSciNet  Google Scholar 

  32. Bonet, J., Gil, A.J., Ortigosa, R.: A computational framework for polyconvex large strain elasticity. Comput. Methods Appl. Mech. Eng. 283, 1061–1094 (2015)

    Article  MathSciNet  Google Scholar 

  33. Bonet, J., Gil, A.J., Ortigosa, R.: On a tensor cross product based formulation of large strain solid mechanics. Int. J. Solids Struct. 84, 49–63 (2016)

    Article  Google Scholar 

  34. de Boer, R.: Vektor-und Tensorrechnung für Ingenieure. Springer (1982)

    Book  Google Scholar 

  35. Gibbs, J., Wilson, E.: Vector Analysis, 9th edn. Yale University Press (1947)

    Google Scholar 

  36. Poya, R., Gil, A.J., Ortigosa, R.: A high performance data parallel tensor contraction framework: application to coupled electro-mechanics. Comput. Phys. Commun. 216, 35–52 (2017)

    Article  Google Scholar 

  37. Basar, Y., Weichert, D.: Nonlinear Continuum Mechanics of Solids: Fundamental Mathematical and Physical Concepts. Springer (2000)

    Book  Google Scholar 

  38. Jog, C.S.: A concise proof of the representation theorem for fourth-order isotropic tensors. J. Elast. 85(2), 119–124 (2006). https://doi.org/10.1007/s10659-006-9074-0

    Article  MathSciNet  MATH  Google Scholar 

  39. Sylvester, J.: Sur l′equation en matrices px = xq. C. R. Acad. Sci. Paris 99(67–71), 115–116 (1884)

    Google Scholar 

  40. Golub, G., Nash, S., Van Loan, C.: A Hessenberg-Schur method for the problem AX + XB= C. IEEE Trans. Autom. Control 24(6), 909–913 (1979). https://doi.org/10.1109/TAC.1979.1102170

    Article  MathSciNet  MATH  Google Scholar 

  41. Gardiner, J.D., Laub, A.J., Amato, J.J., Moler, C.B.: Solution of the Sylvester matrix equation AXB′ + CXD′ = E. ACM Trans. Math. Softw. 18(2), 223–231 (1992). https://doi.org/10.1145/146847.146929

    Article  MathSciNet  MATH  Google Scholar 

  42. Ding, F., Chen, T.: Iterative least-squares solutions of coupled Sylvester matrix equations. Syst. Control Lett. 54(2), 95–107 (2005). https://doi.org/10.1016/j.sysconle.2004.06.008

    Article  MathSciNet  MATH  Google Scholar 

  43. Deif, A.S., Seif, N.P., Hussein, S.A.: Sylvester’s equation: accuracy and computational stability. J. Comput. Appl. Math. 61(1), 1–11 (1995). https://doi.org/10.1016/0377-0427(94)00053-4

    Article  MathSciNet  MATH  Google Scholar 

  44. Scheidler, M.: The tensor equation AX+XA=Φ(A, H), with applications to kinematics of continua. J. Elast. 36(2), 117–153 (1994)

    Article  MathSciNet  Google Scholar 

  45. Nadeau, J.C., Ferrari, M.: Invariant tensor-to-matrix mappings for evaluation of tensorial expressions. J. Elast. 52(1), 43–61 (1998). https://doi.org/10.1023/A:1007539929374

    Article  MathSciNet  MATH  Google Scholar 

  46. Rosati, L.: Derivatives and rates of the stretch and rotation tensors. J. Elast. 56(3), 213–230 (1999)

    Article  MathSciNet  Google Scholar 

  47. Jog, C.S.: Derivatives of the stretch, rotation and exponential tensors in n-dimensional vector spaces. J. Elast. 82(2), 175–192 (2006). https://doi.org/10.1007/s10659-005-9038-9

    Article  MathSciNet  MATH  Google Scholar 

  48. Voigt, W.: Lehrbuch der Kristallphysik:(Mit Ausschluss der Kristalloptik), vol. 34. BG Teubner (1910)

    MATH  Google Scholar 

  49. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)

    MATH  Google Scholar 

  50. Helnwein, P.: Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Comput. Methods Appl. Mech. Eng. 190(22–23), 2753–2770 (2001). https://doi.org/10.1016/S0045-7825(00)00263-2

    Article  MathSciNet  MATH  Google Scholar 

  51. O′Shea, D., Attard, M., Kellermann, D.: Anisotropic hyperelasticity using a fourth-order structural tensor approach. Int. J. Solids Struct. 198, 149–169 (2020)

    Article  Google Scholar 

  52. O′Shea, D.J., Attard, M.M., Kellermann, D.C.: Hyperelastic constitutive modelling for transversely isotropic composites and orthotropic biological tissues. Int. J. Solids Struct. 169, 1–20 (2019)

    Article  Google Scholar 

  53. O′Shea, D.J., Attard, M.M., Kellermann, D.C., Sansour, C.: Nonlinear finite element formulation based on invariant-free hyperelasticity for orthotropic materials. Int. J. Solids Struct. 185, 191–201 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario M. Attard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellermann, D.C., Attard, M.M. & O’Shea, D.J. Fourth-order tensor algebraic operations and matrix representation in continuum mechanics. Arch Appl Mech 91, 4631–4668 (2021). https://doi.org/10.1007/s00419-021-01926-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01926-0

Keywords

Navigation