Skip to main content
Log in

Modelling flow past a rough sphere via stream functions and solution through Galerkin’s method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We study the flow past a rough sphere considering the rugosity as a parameter and its effect on the drag coefficient. The numerical implementation is carried out via a novel approach using Galerkin’s method combined with an asymptotic expansion for the stream function. The amplitude of the spatial fluctuation is used as the perturbation parameter. The numerical results for the size of the vortex ring and streamlines in the smooth case are compared with experimental data found in the literature. In addition, when the surface is rough, we compare the numerical results with the smooth case and the implications of the rugosity in the separation point and other features of the flow are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acheson, D.J.: Elementary fluid dynamics. J. Acoust. Soc. Am. 89(6), 3020 (1991). https://doi.org/10.1121/1.400751

    Article  Google Scholar 

  2. Babout, L., Grudzien, K., Maire, E., Withers, P.J.: Influence of wall roughness and packing density on stagnant zone formation during funnel flow discharge from a silo: an x-ray imaging study. Chem. Eng. Sci. 97, 210–224 (2013). https://doi.org/10.1016/j.ces.2013.04.026

    Article  Google Scholar 

  3. Bhingare, N.H., Dhamale, S.K.: Effect of vehicle geometry on drag coefficient. Res. J. Eng. Technol. 10(2), 71 (2019). https://doi.org/10.5958/2321-581x.2019.00013.8

    Article  Google Scholar 

  4. Biringen, S., Chow, C.Y.: An Introduction to Computational Fluid Mechanics by Example. Wiley, New York (2011). https://doi.org/10.1002/9780470549162

    Book  MATH  Google Scholar 

  5. Bonnivard, M., Bucur, D.: Microshape control, riblets, and drag minimization. SIAM J. Appl. Math. 73(2), 723–740 (2013). https://doi.org/10.1137/100814846

    Article  MathSciNet  MATH  Google Scholar 

  6. Bons, J.P.: A review of surface roughness effects in gas turbines. J. Turbomach. 132(2) 021004 (2010). https://doi.org/10.1115/1.3066315

  7. Busse, A., Thakkar, M., Sandham, N.D.: Reynolds-number dependence of the near-wall flow over irregular rough surfaces. J. Fluid Mech. 810, 196–224 (2017). https://doi.org/10.1017/jfm.2016.680

    Article  MathSciNet  MATH  Google Scholar 

  8. Domel, A.G., Domel, G., Weaver, J.C., Saadat, M., Bertoldi, K., Lauder, G.V.: Hydrodynamic properties of biomimetic shark skin: effect of denticle size and swimming speed. Bioinspir. Biomimet. 13(5), 056014 (2018). https://doi.org/10.1088/1748-3190/aad418

    Article  Google Scholar 

  9. Evans, L.: Marine algae and fouling: a review, with particular reference to ship-fouling. Botan. Marina 24(4), 167–172 (1981). https://doi.org/10.1515/botm.1981.24.4.167

    Article  Google Scholar 

  10. Fung, Y.C.: Flying and swimming. In: Biomechanics, pp. 106–154. Springer, New York (1990). https://doi.org/10.1007/978-1-4419-6856-2_4

  11. Goluskin, D., Doering, C.R.: Bounds for convection between rough boundaries. J. Fluid Mech. 804, 370–386 (2016). https://doi.org/10.1017/jfm.2016.528

    Article  MathSciNet  MATH  Google Scholar 

  12. Hoerner, D.F.: Fluid-dynamic drag, illustrated. J. R. Aeronaut. Soc. 62(571), 400 (1958). https://doi.org/10.1017/S0368393100069200

    Article  Google Scholar 

  13. Currie, I.G.: Fundamental mechanics of fluids, 3rd edn. In: Taylor & Francis e-Library Mechanical Engineering, vol. 154. Marcel Dekker, New York (2002)

  14. Bottom Ii, R.G., Borazjani, I., Blevins, E.L., Lauder, G.V.: Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. J. Fluid Mech. 788, 407–443 (2016). https://doi.org/10.1017/jfm.2015.702

    Article  MathSciNet  MATH  Google Scholar 

  15. Jimenez, J.: Turbulent flows over rough walls. Ann. Rev. Fluid Mech. 36(1), 173–196 (2004). https://doi.org/10.1146/annurev.fluid.36.050802.122103

    Article  MathSciNet  MATH  Google Scholar 

  16. Kawaguti, M.: The critical Reynolds number for the flow past a sphere. J. Phys. Soc. Jpn. 10(8), 694–699 (1955). https://doi.org/10.1143/jpsj.10.694

    Article  MathSciNet  Google Scholar 

  17. Lauder, G.V., Wainwright, D.K., Domel, A.G., Weaver, J.C., Wen, L., Bertoldi, K.: Structure, biomimetics, and fluid dynamics of fish skin surfaces. Phys. Rev. Fluids 1(6), 1–18 (2016). https://doi.org/10.1103/physrevfluids.1.060502

  18. Martínez Hernández, J.E.: Modelado y simulación de parques eólicos integrados a los sistemas eléctricos de potencia. Master’s thesis, Facultad de Ingeniería, Universidad Nacional Autónoma de México (2017)

  19. Nevard, J., Keller, J.B.: Homogenization of rough boundaries and interfaces. SIAM J. Appl. Math. 57(6), 1660–1686 (1997). https://doi.org/10.1137/S0036139995291088

    Article  MathSciNet  MATH  Google Scholar 

  20. Nikuradse, J.: Laws of flow in rough pipes (Strömungsgesetze in rauhen Rohren, 1933). Natl. Advisory Comm. Aeronaut. Wash. Tech. Memo. 1292, 1–62 (1950)

  21. Shockling, M.A., Allen, J.J., Smits, A.J.: Roughness effects in turbulent pipe flow. J. Fluid Mech. 564, 267 (2006). https://doi.org/10.1017/s0022112006001467

    Article  MATH  Google Scholar 

  22. Taneda, S.: Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Jpn. 11(10), 1104–1108 (1956). https://doi.org/10.1143/jpsj.11.1104

    Article  Google Scholar 

  23. Tuck, E., Kouzoubov, A.: A laminar roughness boundary condition. J. Fluid Mech. 300, 59–70 (1995). https://doi.org/10.1017/S0022112095003600

    Article  MathSciNet  MATH  Google Scholar 

  24. Wen, L., Weaver, J.C., Thornycroft, P.J.M., Lauder, G.V.: Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing. Bioinspir. Biomimet. 10(6), 066010 (2015). https://doi.org/10.1088/1748-3190/10/6/066010

    Article  Google Scholar 

Download references

Acknowledgements

The financial resources were provided by CONACYT. Authors would like to thank to the Instituto de Ingenieria, PREI-DGAPA and MyM-IIMAS, UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Iglesias-Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Báez, Á., Ramírez-Trocherie, MA., Lobato, A. et al. Modelling flow past a rough sphere via stream functions and solution through Galerkin’s method. Arch Appl Mech 91, 1897–1905 (2021). https://doi.org/10.1007/s00419-020-01860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01860-7

Keywords

Mathematics Subject Classification

Navigation