Skip to main content
Log in

Elastic–plastic problem for a circular hole plate with regard to crack initiation in elastic zone

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A plane elastic–plastic problem of stress distribution in a circular hole thin plate involving initiation and propagation of cracks in an elastic zone, is considered. It is assumed that the stress level is such that the circular hole is entirely enclosed by the plastic deformations zone. The plate material satisfies the Tresca–Saint Venant plasticity condition. It is supposed that cracks initiation and fracture of the plate material occur in the loading process in the elastic zone. Location and size of prefracture zone in the plate material are unknown in advance and are to be determined. The methods of theory of perturbations and theory of singular integral equations are used. As a crack appearance condition, we use the criterion of critical opening of prefracture zone faces. The interface of elastic and plastic deformations and also the location and sizes of crack initiation zones are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Galin, L.A.: Elastic–Plastic Problems. Nauka, Moscow (1984). (in Russian)

    Google Scholar 

  2. Mirsalimov, V.M.: Non-one-dimensional Elastoplastic Problems. Nauka, Moscow (1987). (in Russian)

    Google Scholar 

  3. Annin, B.D., Cherepanov, G.P.: Elastic–Plastic Problems. ASME, New York (1988)

    Google Scholar 

  4. Cherepanov, G.P.: On a method of solving the elasto-plastic problem. J. Appl. Math. Mech. 27, 644–655 (1963)

    Article  MathSciNet  Google Scholar 

  5. Cherepanov, G.P.: On the solution of certain problems with an unknown boundary in the theory of elasticity and plasticity. J. Appl. Math. Mech. 28, 162–167 (1964)

    Article  MathSciNet  Google Scholar 

  6. Mirsalimov, V.M.: The solution of some elastic–plastic problems. Collection of papers "Mechanics of Deformable Solid", pp. 118–130. Elm, Baku (1975)

  7. Mirsalimov, V.M.: Elastoplasticity problem regarding a thin plate with a biperiodic system of circular holes. Soviet Appl. Mech. 12, 275–279 (1976a)

    Article  Google Scholar 

  8. Mirsalimov, V.M.: Elastoplastic problem for a thin plate weakened by a periodic system of round apertures. J. Appl. Mech. Tech. Phys. 17, 741–745 (1976b)

    Article  Google Scholar 

  9. Graba, M.: A numerical analysis of selected elastic-plastic fracture parameters for DEN(T) plates under plane strain conditions. Int. J. Appl. Mech. Eng. 22, 49–80 (2017)

    Article  Google Scholar 

  10. Fan, M., Zhang, Y.M., Xiao, Z.M.: The interface effect of a nano-inhomogeneity on the fracture behavior of a crack and the nearby edge dislocation. Int. J. Damage Mech. 26, 480–497 (2017)

    Article  Google Scholar 

  11. Huang, Ch., El Hami, A., Radi, B.: Metamodel-based inverse method for parameter identification: elastic–plastic damage model. Eng. Optim. 49, 633–653 (2017)

    Article  MathSciNet  Google Scholar 

  12. Yang, H.Q., Liu, J.F., Luo, C., Zhou, X.P.: An elastic–plastic damage model considering capillary effect for petrol–water saturated sandstone. Int. J. Damage Mech. 27, 1516–1550 (2018)

    Article  Google Scholar 

  13. Sun, X., Yao, J., Chai, G., Bao, Y.: Numerical analysis of the influence factors of plastic failure in the cracked nozzle region of reactor pressure vessel. Int. J. Fract. 214, 167–184 (2018)

    Article  Google Scholar 

  14. Salehi Nasab, A., Mashayekhi, M.: Application of an efficient anisotropic damage model to the prediction of the failure of metal forming processes. Int. J. Damage Mech. 28, 1556–1579 (2019)

    Article  Google Scholar 

  15. Wang, H., Liu, X., Wang, X., Wang, Y.: Numerical method for estimating fatigue crack initiation size using elastic–plastic fracture mechanics method. Appl. Math. Model. 73, 365–377 (2019)

    Article  MathSciNet  Google Scholar 

  16. Matvienko, Y.G.: Comparison of the constraint parameters in elastic–plastic fracture mechanics. Frattura ed Integrita Strutturale 49, 36–43 (2019)

    Article  Google Scholar 

  17. Cook, R.F.: Fracture sequences during elastic–plastic indentation of brittle materials. J. Mater. Res. 34, 1633–1644 (2019)

    Article  Google Scholar 

  18. Chen, M., Yu, W., Xue, F., Ku, F., Chen, Z., Wang, W., Yu, Y., Shi, J.: 3-D FE analyses of WRS and simplified elastic-plastic fracture mechanics assessment of a repaired weld. Nucl. Eng. Des. 341, 124–136 (2019)

    Article  Google Scholar 

  19. Ustrzycka, A., Skoczń, B., Nowak, M., Kurpaska, Ł., Wyszkowska, E., Jagielski, J.: Elastic–plastic-damage model of nano-indentation of the ion-irradiated 6061 aluminium alloy. Int. J. Damage Mech (2020). https://doi.org/10.1177/1056789520906209

    Article  Google Scholar 

  20. Rahimi, A., Ayatollahi, M., Torabi, A.: Elastic–plastic damage prediction in notched epoxy resin specimens under mixed mode I/II loading using two virtual linear elastic failure criteria. Int. J. Damage Mech. (2020). https://doi.org/10.1177/1056789520905345

    Article  Google Scholar 

  21. Sokolovsky, V.V.: Theory of plasticity. Vysshaya shkola, Moscow (1969). (in Russian)

    Google Scholar 

  22. Mirsalimov, V.M.: Initiation of defects such as a crack in the bush of contact pair. Matematicheskoe modelirovaniye 17(2), 35–45 (2005)

    MATH  Google Scholar 

  23. Mirsalimov, V.M., Hasanov, S.G.: Modeling of crack nucleation in covering on an elastic base. Int. J. Damage Mech. 23, 430–450 (2014)

    Article  Google Scholar 

  24. Panasyuk, V.V.: Mechanics of Quasi-brittle Fracture of Materials. Naukova Dumka, Kiev (1991). (in Russian)

    Google Scholar 

  25. Rusinko, A., Rusinko, K.: Plasticity and Creep of Metals. Springer, Berlin (2011)

    Book  Google Scholar 

  26. Muskhelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity. Springer, Dordrecht (1977)

    Book  Google Scholar 

  27. Panasyuk, V.V., Savruk, M.P., Datsyshyn, A.P.: Stress Distribution Around Cracks in Plates and Shells. Naukova Dumka, Kiev (1976). (in Russian)

    Google Scholar 

  28. Ladopoulos, E.G.: Singular Integral Equations: Linear and Non-linear Theory and Its Applications in Science and Engineering. Springer, Berlin (2000)

    Book  Google Scholar 

  29. Abbas, I.A., Marin, M.: Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Phys. E 87, 254–260 (2017)

    Article  Google Scholar 

  30. Itu, C., Öchsner, A., Vlase, S., Marin, I.M.: Improved rigidity of composite circular plates through radial ribs. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 233, 1585–1593 (2019)

    Article  Google Scholar 

  31. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Adda Bedia, E.A., Abdelouahed, T., Mahmoud, S.R., Abdeldjebbar, T., Benrahou, K.H.: Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory. Adv. Nano Res. 8, 293–305 (2020)

    Google Scholar 

  32. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Abdeldjebbar, T., Benrahou, K.H., Abdelouahed, T., Adda Bedia, E.A., Mahmoud, S.R.: A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions. Steel Compos. Struct. 36, 355–367 (2020)

    Google Scholar 

  33. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Abdeldjebbar, T., Adda Bedia, E.A., Mahmoud, S.R., Abdelouahed, T.: Bending analysis of functionally graded porous plates via a refined shear deformation theory. Comput. Concrete 26, 63–74 (2020)

    Google Scholar 

  34. Rabhi, M., Benrahou, K.H., Kaci, A., Sid Ahmed Houari, M., Bourada, F., Bousahla, A.A., Abdeldjebbar, T., Adda Bedia, E.A., Mahmoud, S.R., Abdelouahed, T.: A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Geomech. Eng. 22, 119–132 (2020)

    Google Scholar 

  35. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Abdeldjebbar, T., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H., Abdelouahed, T.: A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin’s approach. Geomech. Eng. 21, 471–487 (2020)

    Google Scholar 

  36. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Abdeldjebbar, T., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H., Abdelouahed, T.: Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations. Comput. Concrete 25, 311–325 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vagif M. Mirsalimov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirsalimov, V.M. Elastic–plastic problem for a circular hole plate with regard to crack initiation in elastic zone. Arch Appl Mech 91, 1329–1342 (2021). https://doi.org/10.1007/s00419-020-01825-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01825-w

Keywords

Navigation