Skip to main content
Log in

Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a new analytical approach suitable for the stability analysis of multibody mechanical systems is introduced in the framework of Lagrangian mechanics. The approach developed in this work is based on the direct linearization of the index-three form of the differential-algebraic dynamic equations that describe the motion of mechanical systems subjected to nonlinear constraints. One of the distinguishing features of the proposed method is that it can handle general sets of nonlinear holonomic and/or nonholonomic constraints without altering the original mathematical structure of the equations of motion. While the typical state-space dynamic description associated with multibody systems leads to the definition of a standard eigenproblem, which is impractical, if not impossible, to implement in the case of complex systems, the method developed in this paper involves a generalized state-space representation of the dynamic equations and allows for the formulation of a generalized eigenvalue problem that extends the scope of applicability of the stability analysis to complex mechanical systems. As demonstrated in this investigation employing simple numerical examples, the proposed methodology can be readily implemented in general-purpose multibody computer programs and compares favorably with several other reference computational approaches already available in the multibody literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)

    Google Scholar 

  3. Ebrahimi, S., Eberhard, P.: Rigid-elastic modeling of meshing gear wheels in multibody systems. Multibody Syst. Dyn. 16(1), 55–71 (2006)

    MATH  Google Scholar 

  4. Meli, E., Malvezzi, M., Papini, S., Pugi, L., Rinchi, M., Rindi, A.: A railway vehicle multibody model for real-time applications. Veh. Syst. Dyn. 46(12), 1083–1105 (2008)

    Google Scholar 

  5. Villecco, F.: On the evaluation of errors in the virtual design of mechanical systems. Machines 6(3), 36 (2018)

    Google Scholar 

  6. Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19(9), 475 (2017)

    Google Scholar 

  7. Villecco, F., Pellegrino, A.: Entropic measure of epistemic uncertainties in multibody system models by axiomatic design. Entropy 19(7), 291 (2017)

    Google Scholar 

  8. Escalona, J.L., Orzechowski, G., Mikkola, A.M.: Flexible multibody modeling of reeving systems including transverse vibrations. Multibody Syst. Dyn. 44(2), 107–133 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(1), 69–84 (2016)

    Google Scholar 

  10. Rahikainen, J., Mikkola, A., Sopanen, J., Gerstmayr, J.: Combined semi-recursive formulation and lumped fluid method for monolithic simulation of multibody and hydraulic dynamics. Multibody Syst. Dyn. 44(3), 293–311 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Palomba, I., Richiedei, D., Trevisani, A.: Kinematic state estimation for rigid-link multibody systems by means of nonlinear constraint equations. Multibody Syst. Dyn. 40(1), 1–22 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor and Francis, London (1992)

    MATH  Google Scholar 

  13. Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1(1), 3–12 (2006)

    Google Scholar 

  14. Huston, R.L.: Multibody dynamics—modeling and analysis methods. Appl. Mech. Rev. 44(3), 109–117 (1991)

    Google Scholar 

  15. Lot, R., Massaro, M.: A symbolic approach to the multibody modeling of road vehicles. Int. J. Appl. Mech. 9(05), 1750068 (2017)

    Google Scholar 

  16. Maddio, P.D., Meschini, A., Sinatra, R., Cammarata, A.: An optimized form-finding method of an asymmetric large deployable reflector. Eng. Struct. 181, 27–34 (2019)

    Google Scholar 

  17. Leine, R.I.: The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dyn. 59(1–2), 173–182 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Vukić, Z., Kuljača, L.,Đonlagić, D., Tešnjak, S.: Nonlinear Control Systems. Marcel Dekker, New York (2003)

  19. Jain, A.: Multibody graph transformations and analysis: part I: tree topology systems. Nonlinear Dyn. 67(4), 2779–2797 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Jain, A.: Multibody graph transformations and analysis: part II: closed-chain constraint embedding. Nonlinear Dyn. 67(4), 2153–2170 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Ripepi, M., Masarati, P.: Reduced order models using generalized eigenanalysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 225, 52–65 (2011)

    Google Scholar 

  22. Lehner, M., Eberhard, P.: A two-step approach for model reduction in flexible multibody dynamics. Multibody Syst. Dyn. 17, 157–176 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Koutsovasilis, P., Beitelschmidt, M.: Comparison of model reduction techniques for large mechanical systems: AA study on an elastic rod. Multibody Syst. Dyn. 20, 111–128 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Nikravesh, P.E., Gim, G.: Ride and stability analysis of a sports car using multibody dynamic simulation. Math. Comput. Model. 14, 953–958 (1990)

    Google Scholar 

  25. Kim, J.K., Han, J.H.: A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta. Bioinspir. Biomim. 9(1), 016011 (2014). https://doi.org/10.1088/1748-3182/9/1/016011

    Article  Google Scholar 

  26. Sun, M., Wang, J., Xiong, Y.: Dynamic flight stability of hovering insects. Acta Mech. Sin. Xuebao 23, 231–246 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Bauchau, O.A., Wang, J.: Stability analysis of complex multibody systems. J. Comput. Nonlinear Dyn. 1, 71–80 (2006)

    Google Scholar 

  28. Cuadrado, J., Vilela, D., Iglesias, I., Martín, A., Peña, A.: A multibody model to assess the effect of automotive motor in-wheel configuration on vehicle stability and comfort. Proc. ECCOMAS Themat. Conf. Multibody Dyn. 2013, 1083–1092 (2013)

    Google Scholar 

  29. Escalona, J.L., Chamorro, R.: Stability analysis of vehicles on circular motions using multibody dynamics. Nonlinear Dyn. 53, 237–250 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Quaranta, G., Mantegazza, P., Masarati, P.: Assessing the local stability of periodic motions for large multibody non-linear systems using proper orthogonal decomposition. J. Sound Vib. 271, 1015–1038 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Masarati, P.: Direct eigenanalysis of constrained system dynamics. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 223, 335–342 (2010)

    Google Scholar 

  32. Negrut, D., Ortiz, J.L.: A practical approach for the linearization of the constrained multibody dynamics equations. J. Comput. Nonlinear Dyn. 1, 230–239 (2006)

    Google Scholar 

  33. Ortiz, J.L., Negrut, D.: Exact linearization of multibody systems using user-defined coordinates. SAE Tech Pap. (2006)

  34. Nichkawde, C., Harish, P.M., Ananthkrishnan, N.: Stability analysis of a multibody system model for coupled slosh-vehicle dynamics. J. Sound. Vib. 275, 1069–1083 (2004)

    Google Scholar 

  35. Bencsik, L., Kovács, L.L., Zelei, A.: Stabilization of internal dynamics of underactuated systems by periodic servo-constraints. Int. J. Struct. Stab. Dyn. 17, 1–14 (2017)

    MathSciNet  Google Scholar 

  36. Zenkov, D.V., Bloch, A.M., Marsden, J.E.: The energy-momentum method for the stability of non-holonomic systems. Dyn. Stab. Syst. 13, 123–165 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, vol. 33. American Mathematical Society, Philadelphia (2004)

    MATH  Google Scholar 

  38. Ruina, A.: Nonholonomic stability aspects of piecewise holonomic systems. Rep. Math. Phys. 42, 91–100 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Pollard, B., Fedonyuk, V., Tallapragada, P.: Swimming on limit cycles with nonholonomic constraints. Nonlinear Dyn. 97, 2453–2468 (2019)

    MATH  Google Scholar 

  40. Zhang, C., Li, Y., Qi, G., Sheng, A.: Distributed finite-time control for coordinated circumnavigation with multiple non-holonomic robots. Nonlinear Dyn. 98, 573–588 (2019)

    Google Scholar 

  41. Pappalardo, C.M., Guida, D.: On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots. Arch. Appl. Mech. 89(4), 669–698 (2019)

    Google Scholar 

  42. Pappalardo, C.M., Guida, D.: Forward and inverse dynamics of a unicycle-like mobile robot. Machines 7(1), 5 (2019)

    Google Scholar 

  43. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)

    Google Scholar 

  44. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008)

    Google Scholar 

  45. Cheli, F., Pennestrí, E.: Cinematica e Dinamica dei Sistemi Multibody, Volume 1, CEA Casa Editrice Ambrosiana (2009)

  46. Cheli, F., Pennestrí, E.: Cinematica e Dinamica dei Sistemi Multibody, Volume 2, CEA Casa Editrice Ambrosiana (2009)

  47. Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2003)

    Google Scholar 

  48. Meirovitch, L.: Methods of Analytical Dynamics, Courier Corporation (2010)

  49. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)

    Google Scholar 

  50. Flannery, M.R.: The enigma of nonholonomic constraints. Am. J. Phys. 73(3), 265–272 (2005)

    MathSciNet  MATH  Google Scholar 

  51. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  52. Flannery, M.R.: D’Alembert–Lagrange analytical dynamics for nonholonomic systems. J. Math. Phys. 52(3), 032705 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Flores, P.: Concepts and Formulations for Spatial Multibody Dynamics. Springer, Berlin (2015)

    MATH  Google Scholar 

  54. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  55. Pappalardo, C.M., Guida, D.: On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems. Arch. Appl. Mech. 88(3), 419–451 (2018)

    Google Scholar 

  56. Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017)

    Google Scholar 

  57. Lanczos, C.: The Variational Principles of Mechanics, Courier Corporation (2012)

  58. Shabana, A.A., Sany, J.R.: An augmented formulation for mechanical systems with non-generalized coordinates: application to rigid body contact problems. Nonlinear Dyn. 24(2), 183–204 (2001)

    MATH  Google Scholar 

  59. Nikravesh, P.E.: Planar Multibody Dynamics: Formulation, Programming and Applications. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  60. Rabier, P.J., Rheinboldt, W.C.: Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  61. Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Syst. Dyn. 1(3), 259–280 (1997)

    MathSciNet  MATH  Google Scholar 

  62. Mariti, L., Belfiore, N.P., Pennestrí, E., Valentini, P.P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Methods Eng. 88(7), 637–656 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)

    Google Scholar 

  64. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)

    MathSciNet  MATH  Google Scholar 

  65. Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)

    MathSciNet  MATH  Google Scholar 

  66. Cossalter, V., Lot, R., Massaro, M.: An advanced multibody code for handling and stability analysis of motorcycles. Meccanica 46(5), 943–958 (2011)

    MathSciNet  MATH  Google Scholar 

  67. Cheli, F., Diana, G.: Advanced Dynamics of Mechanical Systems. Springer, Berlin (2015)

    MATH  Google Scholar 

  68. Shabana, A.A.: Computational Continuum Mechanics. Wiley, New York (2018)

    MATH  Google Scholar 

  69. Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  70. Shi, P., McPhee, J.: Dynamics of flexible multibody systems using virtual work and linear graph theory. Multibody Syst. Dyn. 4(4), 355–381 (2000)

    MATH  Google Scholar 

  71. Pappalardo, C.M., Guida, D.: A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems. Arch. Appl. Mech. 88(12), 2153–2177 (2018)

    Google Scholar 

  72. Shabana, A.A.: Computational Dynamics. Wiley, New York (2009)

    MATH  Google Scholar 

  73. Garcia De Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (2012)

    Google Scholar 

  74. Pennestrí, E., Vita, L.: Strategies for the numerical integration of DAE systems in multibody dynamics. Comput. Appl. Eng. Educ. 12(2), 106–116 (2004)

    Google Scholar 

  75. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  76. Udwadia, F.E., Wanichanon, T.: On general nonlinear constrained mechanical systems. Numer. Algebra Control Optim. 3(3), 425–443 (2013)

    MathSciNet  MATH  Google Scholar 

  77. Shabana, A.A.: Euler parameters kinetic singularity. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 228(3), 307–313 (2014)

    Google Scholar 

  78. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 439(1906), 407–410 (1992)

  79. Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-linear Mech. 37(6), 1079–1090 (2002)

    MathSciNet  MATH  Google Scholar 

  80. Shabana, A.A.: Vibration of Discrete and Continuous Systems, 3rd edn. Springer, New York (2019)

    MATH  Google Scholar 

  81. Meirovitch, L.: Fundamentals of Vibrations. Waveland Press, New York (2010)

    Google Scholar 

  82. Amirouche, F.: Fundamentals of Multibody Dynamics: Theory and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  83. Hogben, L.: Handbook of Linear Algebra. Chapman and Hall/CRC, London (2013)

    MATH  Google Scholar 

  84. Golub, G.H., Van Der Vorst, H.A.: Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 123(1–2), 35–65 (2000)

    MathSciNet  MATH  Google Scholar 

  85. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    MathSciNet  MATH  Google Scholar 

  86. Ashino, R., Nagase, M., Vaillancourt, R.: Behind and beyond the MATLAB ODE suite. Comput. Math. Appl. 40(4–5), 491–512 (2000)

    MathSciNet  MATH  Google Scholar 

  87. Pappalardo, C.M., De Simone, M.C., Guida, D.: Multibody modeling and nonlinear control of the pantograph/catenary system. Arch. Appl. Mech. 89(8), 1589–1626 (2019)

    Google Scholar 

  88. Guida, R., De Simone, M.C., Dasic, P., Guida, D.: Modeling techniques for kinematic analysis of a six-axis robotic arm. IOP Conf. Ser. Mater. Sci. Eng. 568(1), 012115 (2019)

    Google Scholar 

  89. Rivera, Z.B., De Simone, M.C., Guida, D.: Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 7(2), 42 (2019)

    Google Scholar 

  90. Colucci, F., De Simone, M.C., Guida, D.: TLD design and development for vibration mitigation in structures. Lect. Notes Netw. Syst. 76, 59–72 (2019)

    Google Scholar 

  91. De Simone, M., Rivera, Z., Guida, D.: Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 6(2), 18 (2018)

    Google Scholar 

  92. De Simone, M.C., Guida, D.: Control design for an under-actuated UAV model. FME Trans. 46(4), 443–452 (2018)

    Google Scholar 

  93. De Simone, M.C., Guida, D.: Identification and control of a unmanned ground vehicle by using Arduino. UPB Sci. Bull. Ser. D Mech. Eng. 80(1), 141–154 (2018)

    Google Scholar 

  94. De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1), 8 (2018)

    Google Scholar 

  95. De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46(1), 93–100 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine M. Pappalardo.

Ethics declarations

Author’s contribution

This research paper was principally developed by the first author (Carmine Maria Pappalardo). A great support was provided by the second author (Antonio Lettieri). The detailed review carried out by the third author (Domenico Guida) considerably improved the quality of the work.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this appendix, the main equations describing four alternative computational algorithms for the determination of the generalized acceleration vector of a multibody system are synthetically reported.

1.1 A.1 Embedding technique

$$\begin{aligned} {{\mathbf{q}}_i}= & {} {{\mathbf{B}}_i}{\mathbf{q}} \end{aligned}$$
(154)
$$\begin{aligned} {\tilde{\mathbf{I}}}= & {} \left[ {\begin{array}{*{20}{c}} {\mathbf{O}}\\ {\mathbf{I}} \end{array}} \right] ,\quad {{\mathbf{J}}_c} = \left[ {\begin{array}{*{20}{c}} {\mathbf{J}}\\ {{{\mathbf{B}}_i}} \end{array}} \right] ,\quad {{\mathbf{w}}_c} = \left[ {\begin{array}{*{20}{c}} { - {{\mathbf{Q}}_d}}\\ {\mathbf{0}} \end{array}} \right] \end{aligned}$$
(155)
$$\begin{aligned} {{\bar{\mathbf{J}}}_c}= & {} {\mathbf{J}}_c^{ - 1}{\tilde{\mathbf{I}}},\quad {{\bar{\mathbf{w}}}_c} = {\mathbf{J}}_c^{ - 1}{{\mathbf{w}}_c} \end{aligned}$$
(156)
$$\begin{aligned} {{\mathbf{M}}_{i,i}}= & {} {\bar{\mathbf{J}}}_c^\mathrm{T}{\mathbf{M}}{{\bar{\mathbf{J}}}_c},\quad {{\mathbf{Q}}_i} = {\bar{\mathbf{J}}}_c^\mathrm{T}\left( {{{\mathbf{Q}}_b} + {\mathbf{M}}{{{\bar{\mathbf{w}}}}_c}} \right) \end{aligned}$$
(157)
$$\begin{aligned} {{\mathbf{M}}_{i,i}}{{\ddot{\mathbf{q}}}_i}= & {} {{\mathbf{Q}}_i} \end{aligned}$$
(158)
$$\begin{aligned} {\ddot{\mathbf{q}}}= & {} {{\bar{\mathbf{J}}}_c}{{\ddot{\mathbf{q}}}_i} - {{\bar{\mathbf{w}}}_c} \end{aligned}$$
(159)

1.2 A.2 Amalgamated formulation

$$\begin{aligned} {{\mathbf{q}}_i}= & {} {{\mathbf{B}}_i}{\mathbf{q}} \end{aligned}$$
(160)
$$\begin{aligned} {\tilde{\mathbf{I}}}= & {} \left[ {\begin{array}{*{20}{c}} {\mathbf{O}}\\ {\mathbf{I}} \end{array}} \right] ,\quad {{\mathbf{J}}_c} = \left[ {\begin{array}{*{20}{c}} {\mathbf{J}}\\ {{{\mathbf{B}}_i}} \end{array}} \right] ,\quad {{\mathbf{w}}_c} = \left[ {\begin{array}{*{20}{c}} { - {{\mathbf{Q}}_d}}\\ {\mathbf{0}} \end{array}} \right] \end{aligned}$$
(161)
$$\begin{aligned} {{\bar{\mathbf{J}}}_c}= & {} {\mathbf{J}}_c^{ - 1}{\tilde{\mathbf{I}}},\quad {{\bar{\mathbf{w}}}_c} = {\mathbf{J}}_c^{ - 1}{{\mathbf{w}}_c} \end{aligned}$$
(162)
$$\begin{aligned} {{\mathbf{M}}_{am}}= & {} \left[ {\begin{array}{*{20}{c}} {\mathbf{M}}&{}{\mathbf{I}}&{}{\mathbf{O}}\\ {\mathbf{I}}&{}{\mathbf{O}}&{}{ - {{{\bar{\mathbf{J}}}}_c}}\\ {\mathbf{O}}&{}{ - {\bar{\mathbf{J}}}_c^\mathrm{T}}&{}{\mathbf{O}} \end{array}} \right] ,\quad {{\mathbf{q}}_{am}} = \left[ {\begin{array}{*{20}{c}} {{\ddot{\mathbf{q}}}}\\ { - {{\mathbf{Q}}_c}}\\ {{{{\ddot{\mathbf{q}}}}_i}} \end{array}} \right] ,\quad {{\mathbf{Q}}_{am}} = \left[ {\begin{array}{*{20}{c}} {{{\mathbf{Q}}_b}}\\ { - {{{\bar{\mathbf{w}}}}_c}}\\ {\mathbf{0}} \end{array}} \right] \end{aligned}$$
(163)
$$\begin{aligned} {{\mathbf{M}}_{am}}{{\mathbf{q}}_{am}}= & {} {{\mathbf{Q}}_{am}} \end{aligned}$$
(164)
$$\begin{aligned} {\ddot{\mathbf{q}}}= & {} {{\mathbf{B}}_q}{{\mathbf{q}}_{am}} \end{aligned}$$
(165)

1.3 A.3 Projection method

$$\begin{aligned} {{\mathbf{q}}_i}= & {} {{\mathbf{B}}_i}{\mathbf{q}} \end{aligned}$$
(166)
$$\begin{aligned} {\tilde{\mathbf{I}}}= & {} \left[ {\begin{array}{*{20}{c}} {\mathbf{O}}\\ {\mathbf{I}} \end{array}} \right] ,\quad {{\mathbf{J}}_c} = \left[ {\begin{array}{*{20}{c}} {\mathbf{J}}\\ {{{\mathbf{B}}_i}} \end{array}} \right] \end{aligned}$$
(167)
$$\begin{aligned} {{\bar{\mathbf{J}}}_c}= & {} {\mathbf{J}}_c^{ - 1}{\tilde{\mathbf{I}}} \end{aligned}$$
(168)
$$\begin{aligned} {{\mathbf{M}}_{pr}}= & {} \left[ {\begin{array}{*{20}{c}} {{\bar{\mathbf{J}}}_c^\mathrm{T}{\mathbf{M}}}\\ {\mathbf{J}} \end{array}} \right] ,\quad {{\mathbf{Q}}_{pr}} = \left[ {\begin{array}{*{20}{c}} {{\bar{\mathbf{J}}}_c^\mathrm{T}{{\mathbf{Q}}_b}}\\ {{{\mathbf{Q}}_d}} \end{array}} \right] \end{aligned}$$
(169)
$$\begin{aligned} {{\mathbf{M}}_{pr}}{\ddot{\mathbf{q}}}= & {} {{\mathbf{Q}}_{pr}} \end{aligned}$$
(170)

1.4 A.4 Fundamental equations of constrained motion: Udwadia–Kalaba equations

$$\begin{aligned} {{\mathbf{M}}^ * }= & {} {\mathbf{M}} + {{\mathbf{J}}^\mathrm{T}}{\mathbf{J}},\quad {\mathbf{Q}}_b^ * = {{\mathbf{Q}}_b} + {{\mathbf{J}}^\mathrm{T}}{{\mathbf{Q}}_d} \end{aligned}$$
(171)
$$\begin{aligned} {\ddot{\mathbf{q}}}= & {} {\left( {{{\mathbf{M}}^ * }} \right) ^{ - 1}}{\mathbf{Q}}_b^ * + {\left( {{{\mathbf{M}}^ * }} \right) ^{ - 1}}{{\mathbf{J}}^\mathrm{T}}{\left( {{\mathbf{J}}{{\mathbf{M}}^ * }{{\mathbf{J}}^\mathrm{T}}} \right) ^ + }\left( {{{\mathbf{Q}}_d} - {\mathbf{J}}{{\left( {{{\mathbf{M}}^ * }} \right) }^{ - 1}}{\mathbf{Q}}_b^ * } \right) \end{aligned}$$
(172)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappalardo, C.M., Lettieri, A. & Guida, D. Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints. Arch Appl Mech 90, 1961–2005 (2020). https://doi.org/10.1007/s00419-020-01706-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01706-2

Keywords

Navigation