Skip to main content
Log in

Time-dependent behavior of laminated functionally graded beams bonded by viscoelastic interlayer based on the elasticity theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A two-dimensional (2-D) elasticity solution is developed to investigate the time-dependent response of laminated functionally graded beam with viscoelastic interlayer. The elastic modulus in each functionally graded layer varies through the thickness following an exponential function, and the mechanical property of each layer is described by the exact 2-D elasticity equations. Viscoelastic property in the interlayer is simulated by the Maxwell–Wiechert model, in which the memory effect of it is neglected. By virtue of the recursive matrix method, the solution of stress and deformation can be obtained efficiently. The comparison studies indicate that the relative error of the Euler–Bernoulli solution is slight for slender beam with small gradient factor, but it significantly increases as the beam thickness or the gradient factor grows. The finite element solution is close to the present one with large number of sub-layers in FE modeling and small gradient factor of FG layer, while the error of FE solution increases as the number of sub-layers decrease or the gradient factor increases. Besides, the influences of material parameters upon the time-dependent behavior and the optimization for the stress and deformation in the beam are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abanto-Bueno, J., Lambros, J.: Investigation of crack growth in functionally graded materials using digital image correlation. Eng. Fract. Mech. 69, 1695–1711 (2002)

    Article  Google Scholar 

  2. Wang, B.L., Mai, Y.W., Zhang, X.H.: Thermal shock resistance of functionally graded materials. Acta Mater. 52, 4961–4972 (2004)

    Article  Google Scholar 

  3. Li, X.Y., Ding, H.J., Chen, W.Q.: Axisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic functionally graded materials. Acta Mech. 196, 139–159 (2008)

    Article  Google Scholar 

  4. Amirani, M.C., Khalili, S.M.R., Nemati, N.: Free vibration analysis of sandwich beam with FG core using the element free Galerkin method. Compos. Struct. 90, 373–379 (2009)

    Article  Google Scholar 

  5. Momeni, M., Dehkordi, M.B.: Frequency analysis of sandwich beam with FG carbon nanotubes face sheets and flexible core using high-order element. Mech. Adv. Mater. Struct. 26, 805–815 (2019)

    Article  Google Scholar 

  6. Panda, S., Ray, M.C.: Nonlinear finite element analysis of functionally graded plates integrated with patches of piezoelectric fiber reinforced composite. Finite Elem. Anal. Des. 44, 493–504 (2008)

    Article  Google Scholar 

  7. Zenkour, A.M., Alghanmi, R.A.: Hygro-thermo-electro-mechanical bending analysis of sandwich plates with FG core and piezoelectric faces. Mech. Adv. Mater. Struct. (2019). https://doi.org/10.1080/15376494.2018.1562134

    Article  Google Scholar 

  8. Fu, Y.Q., Du, H.J., Zhang, S.: Functionally graded TiN/TiNi shape memory alloy films. Mater. Lett. 57, 2995–2999 (2003)

    Article  Google Scholar 

  9. Xu, S.L., Li, Q.H.: Theoretical analysis on bending behavior of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites. Sci. China Ser. E 52, 363–378 (2009)

    Article  Google Scholar 

  10. Park, S.W., Schapery, R.A.: Methods of interconversion between linear viscoelastic material functions. Part I—a numerical method based on Prony series. Int. J. Solids Struct 36, 1653–1675 (1999)

    Article  Google Scholar 

  11. Galuppi, L., Royer-Carfagni, G.: Laminated beams with viscoelastic interlayer. Int. J. Solids Struct. 49, 2637–2645 (2012)

    Article  Google Scholar 

  12. Galuppi, L., Royer-Carfagni, G.: Buckling of three-layered composite beams with viscoelastic interaction. Compos. Struct. 107, 512–521 (2014)

    Article  Google Scholar 

  13. Allahverdizadeh, A., Mahjoob, M.J., Eshraghi, I., Asgharifard-S, P.: Effects of electrorheological fluid core and functionally graded layers on the vibration behavior of a rotating composite beam. Meccanica 47, 1945–1960 (2012)

    Article  MathSciNet  Google Scholar 

  14. Li, J., Zheng, B.L., Yang, Q., Hu, X.J.: Analysis on time-dependent behavior of laminated functionally graded beams with viscoelastic interlayer. Compos. Struct. 107, 30–35 (2014)

    Article  Google Scholar 

  15. Rizov, V.: Delamination fracture in a functionally graded multilayered beam with material nonlinearity. Arch. Appl. Mech. 87, 1037–1048 (2017)

    Article  Google Scholar 

  16. Simsek, M., Cansiz, S.: Dynamics of elastically connected double-functionally graded beam systems with different boundary conditions under action of a moving harmonic load. Compos. Struct. 94, 2861–2878 (2012)

    Article  Google Scholar 

  17. Simsek, M., Al-Shujairi, M.: Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Compos. Part B Eng. 108, 18–34 (2017)

    Article  Google Scholar 

  18. Wu, H.L., Yang, J., Kitipornchai, S.: Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos. Struct. 162, 244–254 (2017)

    Article  Google Scholar 

  19. Sayyad, A.S., Ghugal, Y.M.: A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates. Int. J. Appl. Mech. 9, 1750007 (2017)

    Article  Google Scholar 

  20. Fan, Y., Xiang, Y., Shen, H.S., Hui, D.: Nonlinear low-velocity impact response of FG-GRC laminated plates resting on visco-elastic foundations. Compos. Part B Eng. 144, 184–194 (2018)

    Article  Google Scholar 

  21. Zhang, C., Wang, J.L.: Viscoelastic analysis of FRP strengthened reinforced concrete beams. Compos. Struct. 93, 3200–3208 (2011)

    Article  Google Scholar 

  22. Madani, N., Mojra, A.: Quantitative diagnosis of breast tumors by characterization of viscoelastic. J. Mech. Behav. Biomed. Mater. 68, 180–187 (2017)

    Article  Google Scholar 

  23. Park, S.W., Kim, Y.R.: Fitting prony-series viscoelastic models with power-law presmoothing. J. Mater. Civ. Eng. 13, 26–32 (2001)

    Article  Google Scholar 

  24. Kim, J., Sholar, G.A., Kim, S.: Determination of accurate creep compliance and relaxation modulus at a single temperature for viscoelastic solids. J. Mater. Civ. Eng. 20, 147–156 (2008)

    Article  Google Scholar 

  25. Shukla, A., Joshi, Y.M.: Boltzmann superposition principle for a time-dependent soft material: assessment under creep flow field. Rheol. Acta 56, 927–940 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (Grant No. 51778285), the Natural Science Foundation of Jiangsu Province (Grant No. BK20190668) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 19KJB560014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Wu or Weiqing Liu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Functions \(n_{m,j}^{i} \) and \(g_{m,j}^{i} (j=1, 2, 3, 4)\) involved in Eqs. (14) and (15)

$$\begin{aligned} n_{m,1}^{i}= & {} -\frac{1}{2}\left( k_{i} +\sqrt{k_{i}^{2}+4\alpha _{m}^{2}-4\alpha _{m} k_{i} \sqrt{-\mu _{i} } } \right) , n_{m,2}^{i} =\frac{1}{2}\left( -k_{i} +\sqrt{k_{i}^{2}+4\alpha _{m}^{2}-4\alpha _{m} k_{i} \sqrt{-\mu _{i} } } \right) , \\ n_{m,3}^{i}= & {} -\frac{1}{2}\left( k_{i} +\sqrt{k_{i}^{2}+4\alpha _{m}^{2}+4\alpha _{m} k_{i} \sqrt{-\mu _{i} } } \right) , n_{m,4}^{i} =\frac{1}{2}\left( -k_{i} +\sqrt{k_{i}^{2}+4\alpha _{m}^{2}+4\alpha _{m} k_{i} \sqrt{-\mu _{i} } } \right) , \\ g_{m,1}^{i}= & {} \frac{1}{4\alpha _{m} f_{m,3}^{i} }\left[ -k_{i}^{2} f_{m,1}^{i} +\mu _{i} (f_{m,1}^{i} )^{3}-2\alpha _{m}^{2} k_{i} -6\alpha _{m}^{2} f_{m,1}^{i} +(f_{m,1}^{i} )^{3}+12\mu _{i} k_{i}^{2} \sqrt{-\mu _{i} } \alpha _{m} -\mu _{i} k_{i}^{2} f_{m,1}^{i} \right. \\&\left. -\,4k_{i}^{2} \sqrt{-\mu _{i} } \alpha _{m} +6\alpha _{m}^{2} \mu _{i}^{2} k_{i} -2\alpha _{m}^{2} \mu _{i}^{2} f_{m,1}^{i} +4\alpha _{m}^{2} \mu _{i} k_{i} -8\alpha _{m}^{2} \mu _{i} f_{m,1}^{i} \right] , \\ g_{m,2}^{i}= & {} \frac{1}{4\alpha _{m} f_{m,3}^{i} }\left[ k_{i}^{2} f_{m,1}^{i} -\mu _{i} (f_{m,1}^{i} )^{3}-2\alpha _{m}^{2} k_{i} +6\alpha _{m}^{2} f_{m,1}^{i} -(f_{m,1}^{i} )^{3}+12\mu _{i} k_{i}^{2} \sqrt{-\mu _{i} } \alpha _{m} +\mu _{i} k_{i}^{2} f_{m,1}^{i}\right. \\&\left. -\,4k_{i}^{2} \sqrt{-\mu _{i} } \alpha _{m} +6\alpha _{m}^{2} \mu _{i}^{2} k_{i} +2\alpha _{m}^{2} \mu _{i}^{2} f_{m,1}^{i} +4\alpha _{m}^{2} \mu _{i} k_{i} +8\alpha _{m}^{2} \mu _{i} f_{m,1}^{i} \right] , \\ g_{m,3}^{i}= & {} \frac{1}{4\alpha _{m} f_{m3}^{i} }\left[ -k_{i}^{2} f_{m,1}^{i} +\mu _{i} (f_{m,1}^{i} )^{3}-2\alpha _{m}^{2} k_{i} -6\alpha _{m}^{2} f_{m,1}^{i} +(f_{m,1}^{i} )^{3}-12\mu _{i} k_{i}^{2} \sqrt{-\mu _{i} } \alpha _{m} -\mu _{i} k_{i}^{2} f_{m,1}^{i} \right. \\&\left. +\,4k_{i}^{2} \sqrt{-\mu _{i} } \alpha _{m} +6\alpha _{m}^{2} \mu _{i}^{2} k_{i} -2\alpha _{m}^{2} \mu _{i}^{2} f_{m,1}^{i} +4\alpha _{m}^{2} \mu _{i} k_{i} -8\alpha _{m}^{2} \mu _{i} f_{m,1}^{i} \right] , \\ g_{m,4}^{i}= & {} \frac{1}{4\alpha _{m} f_{m,3}^{i} }\left[ k_{i}^{2} f_{m,1}^{i} -\mu _{i} (f_{m,1}^{i} )^{3}-2\alpha _{m}^{2} k_{i} +6\alpha _{m}^{2} f_{m,1}^{i} -(f_{m,1}^{i} )^{3}-12\mu _{i} k_{i}^{2} \sqrt{-\mu _{i} } \alpha _{m} +\mu _{i} k_{i}^{2} f_{m,1}^{i} \right. \\&\left. +4k_{i}^{2} \sqrt{-\mu _{i} } \alpha _{m} +6\alpha _{m}^{2} \mu _{i}^{2} k_{i} +2\alpha _{m}^{2} \mu _{i}^{2} f_{m,1}^{i} +4\alpha _{m}^{2} \mu _{i} k_{i} +8\alpha _{m}^{2} \mu _{i} f_{m,1}^{i} \right] , \\ f_{m,1}^{i}= & {} \sqrt{k_{i}^{2} +4\alpha _{m}^{2} -4\alpha _{m} k_{i} \sqrt{-\mu _{i} } } , \\ f_{m,2}^{i}= & {} \sqrt{k_{i}^{2} +4\alpha _{m}^{2} +4\alpha _{m} k_{i} \sqrt{-\mu _{i} } } , \\ f_{m,3}^{i}= & {} \alpha _{m}^{2} \mu _{i}^{2} +2\alpha _{m}^{2} \mu _{i} +4k_{i}^{2} \mu _{i} +\alpha _{m}^{2} , \quad i =1, 2,\ldots , p, m=1, 2, 3\ldots . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Wu, P. & Liu, W. Time-dependent behavior of laminated functionally graded beams bonded by viscoelastic interlayer based on the elasticity theory. Arch Appl Mech 90, 1457–1473 (2020). https://doi.org/10.1007/s00419-020-01677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01677-4

Keywords

Navigation