Skip to main content
Log in

Dynamics of vibrating beams using first-order theory based on Legendre polynomial expansion

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

First-order models are used in the analysis of the tension–compression and transverse bending modes of beam vibration. The equation of motion for each mode and the expressions for boundary conditions are obtained using the generalized variational principle. Systems of partial differential equations for the longitudinal and bending modes of vibrating beams are reduced to a single fourth-order equation, and frequency equations are obtained. The problem of free and forced vibrations of beams that are simply supported at both ends is presented. An analysis and comparison with well-known theories is performed using computer algebra system Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland Publishing Co., Amsterdam (1973)

    MATH  Google Scholar 

  2. Anderson, S.: Higher-order rod approximations for the propagation of longitudinal stress waves in elastic bars. J. Sound Vib. 290, 290–308 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bhaskar, A.: Elastic waves in Timoshenko beams: the ‘lost and found’ of an eigenmode. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465, 239–255 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bishop, R.E.D.: Longitudinal waves in beams. Aeronaut. Q. 3(2), 280–293 (1952)

    Article  MathSciNet  Google Scholar 

  5. Carrera, E., Giunta, G., Petrolo, M.: Beam Structures: Classical and Advanced Theories. Wiley, New Delhi (2011)

    Book  Google Scholar 

  6. Carrera, E., Miglioretti, F., Petrolo, M.: Computations and evaluations of higher-order theories for free vibration analysis of beams. J. Sound Vib. 331, 4269–4284 (2012)

    Article  Google Scholar 

  7. Carrera, E., Pagani, A.: Free vibration analysis of civil engineering structures by component-wise models. J. Sound Vib. 333, 4597–4620 (2014)

    Article  Google Scholar 

  8. Carrera, E., Varello, A.: Dynamic response of thin-walled structures by variable kinematic one-dimensional models. J. Sound Vib. 331, 5268–5282 (2012)

    Article  Google Scholar 

  9. Carrera, E., Zappino, E.: Carrera unified formulation for free-vibration analysis of aircraft structures. AIAA J. 54(1), 280–292 (2016)

    Article  Google Scholar 

  10. Chervyakov, A.M., Nesterenko, V.V.: Is it possible to assign physical meaning to field theory with higher derivatives. Phys. Rev. D 48(12), 5811–5817 (1993). https://doi.org/10.1103/PhysRevD.48.5811

    Article  Google Scholar 

  11. Egorova, O.V., Zhavoronok, S.I., Kurbatov, A.S.: An application of various n-th order shell theories to normal waves propagation problems. In: PNRPU Mechanics Bulletin, vol. 2, pp. 36–59 (2015). (in Russian). https://doi.org/10.15593/perm.mech/2015.2.03.

  12. Elishakoff, I.: An equation both more consistent and simpler than the Bresse–Timoshenko equation. In: Gilat, R., Banks-Sills, L. (eds.) Advances in Mathematical Modeling and Experimental Methods for Materials and Structures, pp. 254–269. Springer, New York (2010)

    Google Scholar 

  13. Elishakoff, I., Kaplunov, J., Nolde, E.: Celebrating the centenary of Timoshenko’s study of effects of shear deformation and rotary inertia. Appl. Mech. Rev. (2015). https://doi.org/10.1115/1.4031965

    Article  Google Scholar 

  14. Elishakoff, I., Soret, C.: A consistent set of nonlocal Bresse–Timoshenko equations for nanobeams with surface effects. J. Appl. Mech. 80, 6 (2013). https://doi.org/10.1115/1.4023630

    Article  Google Scholar 

  15. Graff, K.F.: Wave Motion in Elastic Solids. Dover Publications, New York (1991)

    MATH  Google Scholar 

  16. Grigolyuk, E.I., Selezov, I.T.: Nonclassical theories of vibrations of columns, plates, and shells, advances. In: Science and Technology, Series. Mechanics of Deformable Solids, vol. 5. VINITI Publishers, Moscow (1973). (in Russian)

  17. Gurtin, M.E.: Variational principles for linear elastodynamics. Arch. Ration. Mech. Anal. 16(1), 34–50 (1964)

    Article  MathSciNet  Google Scholar 

  18. Han, S.N., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)

    Article  Google Scholar 

  19. Hoskins, R.F.: Delta Functions. Introduction to Generalized Functions. Woodhead Publishing, Oxford (2009)

    MATH  Google Scholar 

  20. Inman, D.J.: Engineering Vibration, 4th edn. Pearson Education, Inc, Hoboken (2012)

    Google Scholar 

  21. Khoma, I.Y.: Generalized Theory of Anisotropic Shells. Naukova Dumka, Kiev (1987). (in Russian)

    Google Scholar 

  22. Kil’chevskiy, N.A.: Fundamentals of the Analytical Mechanics of Shells, NASA TT, F-292. Washington (1965)

  23. Magrab, E.B.: Vibrations of Elastic Systems. With Applications to MEMS and NEMS. Springer, New York (2012)

    Book  Google Scholar 

  24. Medick, M.A.: One-dimensional theories of wave propagation and vibrations in elastic bars of rectangular cross section. J. Appl. Mech. 33(3), 489–495 (1966)

    Article  MathSciNet  Google Scholar 

  25. Mindlin, R.D.: An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. World Scientific Publishing Co., Hackensack (2006)

    Book  Google Scholar 

  26. Pelekh, B.L., Sukhorol’skii, M.A.: Contact Problems of the Theory of Elastic Anisotropic Shells. Naukova Dumka, Kiev (1980). (in Russian)

    Google Scholar 

  27. Rajasekaran, S.: Structural dynamics of earthquake engineering. Theory and Application using MATHEMATICA and MATLAB. Woodhead Publishing Limited, Cambridge (2009)

    Google Scholar 

  28. Rayleigh, J.W.S.: The Theory of Sound, vol. I, II. Dover Publications, New York (1945)

    MATH  Google Scholar 

  29. Rao, S.: Vibration of Continuous Systems, 2nd edn. Wiley, Hoboken (2019)

    Book  Google Scholar 

  30. Sansone, G.: Orthogonal Functions, 2nd edn. Dover Publications, Inc., New York (1991)

    Google Scholar 

  31. Shatalov, M., Marais, J., Fedotov, I., et al.: Vibration of isotropic solid rods: from classical to modern theories. In: Schmidt, M. (ed.) Advances in Computer Science and Engineering, pp. 187–214. InTech Open Access Publisher, Rijeka (2011)

    Google Scholar 

  32. Sorokin, E.S., Arkhipov, A.S.: The study of free transverse oscillations of a beam as a plane problem of the theory of elasticity. In: Structural Mechanics, pp. 134–141. Moscow (1966) (in Russian)

  33. Stephen, N.G.: The second spectrum of Timoshenko beam theory. J. Sound Vib. 80(4), 578–582 (1982)

    Article  Google Scholar 

  34. Stephen, N.G.: The second spectrum of Timoshenko beam theory further assessment. J. Sound Vib. 292, 372–389 (2006)

    Article  Google Scholar 

  35. Tenkam, H.M., Shatalov, M., Fedotov, I., et al.: Mathematical models for the propagation of stress waves in elastic rods. Exact solutions and numerical simulation. Adv. Appl. Math. Mech. 8(2), 257–270 (2016)

    Article  MathSciNet  Google Scholar 

  36. Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41(245), 744–746 (1921)

    Article  Google Scholar 

  37. Timoshenko, S.P.: On the transverse vibrations of bars of uniform cross section. Philos. Mag. 43(257), 125–131 (1922)

    Article  Google Scholar 

  38. Traill-Nash, R.W., Collar, A.R.: The effects of shear flexibility and rotatory inertia on the bending vibrations of beams. Q. J. Mech. Appl. Math. 6(2), 186–222 (1953)

    Article  MathSciNet  Google Scholar 

  39. Van Rensburg, N.F.J., van der Merwe, A.J.: Natural frequencies and modes of a Timoshenko beam. Wave Motion 44, 58–69 (2006)

    Article  MathSciNet  Google Scholar 

  40. Vekua, I.N.: Shell Theory, General Methods of Construction. Pitman Advanced Pub. Program, Boston (1986)

    Google Scholar 

  41. Weaver Jr., W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering, 5th edn. Wiley, New York (1990)

    Google Scholar 

  42. Zhavoronok, S.I.: A Vekua-type linear theory of thick elastic shells. J. Appl. Math. Phys. (ZAMP) 94(1–2), 164–184 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Zozulya, V.V., Saez, A.: High-order theory for arched structures and its application for the study of the electrostatically actuated MEMS devices. Arch. Appl. Mech. 84(7), 1037–1055 (2014)

    Article  Google Scholar 

  44. Zozulya, V.V., Saez, A.: A high order theory of a thermo elastic beams and its application to the MEMS/NEMS analysis and simulations. Arch. Appl. Mech. 86(7), 1255–1272 (2016)

    Article  Google Scholar 

  45. Zozulya, V.V.: Higher order theory of micropolar plates and shells. J. Appl. Math. Mech. (ZAMM) 98, 886–918 (2018)

    Article  MathSciNet  Google Scholar 

  46. Zozulya, V.V.: Higher order couple stress theory of plates and shells. J. Appl. Math. Mech. (ZAMM) (2018). https://doi.org/10.1002/zamm.201700317

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by the Committee of Science and Technology of Mexico (CONACYT) through a Research Grant (Ciencia Básica, Reference No. 256458). The authors thank Professor Isaac Elishakoff, from Florida Atlantic University, for sending papers [13, 32] and for providing motivation for the research performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Czekanski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czekanski, A., Zozulya, V.V. Dynamics of vibrating beams using first-order theory based on Legendre polynomial expansion. Arch Appl Mech 90, 789–814 (2020). https://doi.org/10.1007/s00419-019-01639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01639-5

Keywords

Navigation