Skip to main content
Log in

Effective conductivity and the effect of electric current on thermal stress around an arbitrarily shaped inhomogeneity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We consider the electric, thermal and elastic fields in an infinite conductor or semiconductor plate containing an arbitrarily shaped inhomogeneity. Complex variable and numerical methods are used to discuss effective conductivities and the effect of electric current on the thermal stress distribution. Our results show that the effective electric and thermal conductivities depend strongly on the shape and size of the inhomogeneity. In addition, the electric current generates considerable thermal stress in the vicinity of the inhomogeneity allowing for the possibility of enhancing or neutralizing any thermal stress induced by heat flux. Detailed analyses indicate that the remote electric current suppresses the maximum normal stress while either suppressing or enhancing the maximum shear and hoop stresses around an arbitrarily shaped inhomogeneity depending on the material parameters and shape of the inhomogeneity. Our findings also allow us to conclude that the electric current suppresses maximum normal and shear stresses on the interface in the case of a triangular inhomogeneity, which, of course, dramatically reduces the threat of interface debonding which is known to be one of the main causes of failure in composites. This research provides a theoretical basis for the prediction of the effective performance as well as for the control of thermal stress in composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ajayan, P.M., Tour, J.M.: Materials science: nanotube composites. Nature 447(7148), 1066 (2007). https://doi.org/10.1038/4471066a

    Article  Google Scholar 

  2. Brandt, J., Drechsler, K., Arendts, F.J.: Mechanical performance of composites based on various three-dimensional woven-fibre preforms. Compos. Sci. Technol. 56(3), 381–386 (1996). https://doi.org/10.1016/0266-3538(95)00135-2

    Article  Google Scholar 

  3. Sanchez, F., Ince, C.: Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Compos. Sci. Technol. 69(7–8), 1310–1318 (2009). https://doi.org/10.1016/j.compscitech.2009.03.006

    Article  Google Scholar 

  4. Liu, S., Shi, B., Siddique, A., Du, Y., Sun, B., Gu, B.: Numerical analyses on thermal stress distribution induced from impact compression in 3D carbon fiber/epoxy braided composite materials. J. Therm. Stress. 41(7), 903–919 (2018). https://doi.org/10.1080/01495739.2018.1437000

    Article  Google Scholar 

  5. Wu, L.: Bounds on the effective thermal conductivity of composites with imperfect interface. Int. J. Eng. Sci. 48(9), 783–794 (2010). https://doi.org/10.1016/j.ijengsci.2010.04.005

    Article  MathSciNet  MATH  Google Scholar 

  6. Rabinovitch, O.: Impact of thermal loads on interfacial debonding in FRP strengthened beams. Int. J. Solids Struct. 47(24), 3234–3244 (2010). https://doi.org/10.1016/j.ijsolstr.2010.08.003

    Article  MATH  Google Scholar 

  7. Murakami, G.: A stress singularity parameter approach for evaluating the interfacial reliability of plastic encapsulated LSI devices. J. Electron. Packag. 111, 243 (1989). https://doi.org/10.1115/1.3226542

    Article  Google Scholar 

  8. Hasebe, N., Bucher, C., Heuer, R.: Analyses of thermal conduction and stress induced by electric current in an infinite thin plate with an elliptical hole. J. Therm. Stress. 32(10), 1065–1086 (2009). https://doi.org/10.1080/01495730903103143

    Article  Google Scholar 

  9. Song, K., Song, H.P., Schiavone, P., Gao, C.F.: Thermal stress induced by electric current in the vicinity of an elliptic inclusion in an infinite plate. J. Therm. Stress. 42(8), 976–992 (2019). https://doi.org/10.1080/01495739.2019.1607789

    Article  Google Scholar 

  10. Song, H., Song, K., Gao, C.: Temperature and thermal stress around an elliptic functional defect in a thermoelectric material. Mech. Mater. 130, 58–64 (2019). https://doi.org/10.1016/j.mechmat.2019.01.008

    Article  Google Scholar 

  11. Birman, V.: Control of fracture at the interface of dissimilar materials using randomly oriented inclusions and networks. Int. J. Eng. Sci. 130, 157–174 (2018). https://doi.org/10.1016/j.ijengsci.2018.05.011

    Article  MathSciNet  MATH  Google Scholar 

  12. Colombi, P., Bassetti, A., Nussbaumer, A.: Analysis of cracked steel members reinforced by pre-stress composite patch. Fatigue Fract. Eng. Mater. Struct. 26(1), 59–66 (2003). https://doi.org/10.1046/j.1460-2695.2003.00598.x

    Article  Google Scholar 

  13. Song, K., Song, H.P., Schiavone, P., Gao, C.F.: Electric current induced thermal stress around a bi-material interface crack. Eng. Fract. Mech. 208, 1–12 (2019). https://doi.org/10.1016/j.engfracmech.2019.01.004

    Article  Google Scholar 

  14. Todoroki, A.: Electric current analysis of CFRP using perfect fluid potential flow. Trans. Jpn. Soc. Aeronaut. Space Sci. 55(3), 183–190 (2012). https://doi.org/10.2322/tjsass.55.183

    Article  Google Scholar 

  15. Song, H.P., Gao, C.F., Li, J.: Two-dimensional problem of a crack in thermoelectric materials. J. Therm. Stress. 38(3), 325–337 (2015). https://doi.org/10.1080/01495739.2015.1015369

    Article  Google Scholar 

  16. Parkus, H.: Thermoelastisity. Blaisdell Publishing Company, Waltham (1968)

    Google Scholar 

  17. Muskhelishvili, N.I.: Some Basic problems of Mathematical Theory of Elasticity. Noordhoff, Leyden (1975)

    MATH  Google Scholar 

  18. Wang, P., Wang, B.L.: Thermoelectric fields and associated thermal stresses for an inclined elliptic hole in thermoelectric materials. Int. J. Eng. Sci. 119, 93–108 (2017). https://doi.org/10.1016/j.ijengsci.2017.06.018

    Article  MathSciNet  MATH  Google Scholar 

  19. Song, K., Song, H.P., Gao, C.F.: Unavoidable electric current caused by inhomogeneities and its influence on measured material parameters of thermoelectric materials. J. Appl. Phys. 123(12), 124105 (2018). https://doi.org/10.1063/1.5011778

    Article  Google Scholar 

  20. Song, K., Song, H.P., Schiavone, P., Gao, C.F.: Thermal stress around an elliptic hole weakened by electric current in an infinite thermoelectric plate. J. Mech. Mater. Struct. 14(1), 179–191 (2019). https://doi.org/10.2140/jomms.2019.14.179

    Article  MathSciNet  Google Scholar 

  21. Song, K., Song, H.P., Li, M., Schiavone, P., Gao, C.F.: Effective properties of a thermoelectric composite containing an elliptic inhomogeneity. Int. J. Heat Mass Transf. 135, 1319–1326 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.088

    Article  Google Scholar 

  22. Wang, S., Dai, M., Ru, C.Q., Gao, C.F.: Stress field around an arbitrarily shaped nanosized hole with surface tension. Acta Mech. 225(12), 3453–3462 (2014). https://doi.org/10.1007/s00707-014-1148-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, H., Wang, L., He, Y., Hu, Y., Zhu, J., Jiang, B.: Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl. Therm. Eng. 88, 363–368 (2015). https://doi.org/10.1016/j.applthermaleng.2014.10.071

    Article  Google Scholar 

  24. Lu, H., Liu, Y., Huang, W.M., Wang, C., Hui, D., Fu, Y.Q.: Controlled evolution of surface patterns for ZnO coated on stretched PMMA upon thermal and solvent treatments. Compos. Part B Eng. 132, 1–9 (2018). https://doi.org/10.1016/j.compositesb.2017.08.009

    Article  Google Scholar 

  25. Dunstan, D.J.: The size effect in the mechanical strength of semiconductors and metals: strain relaxation by dislocation-mediated plastic deformation. J. Mater. Res. 32(21), 4041–4053 (2017). https://doi.org/10.1557/jmr.2017.300

    Article  Google Scholar 

Download references

Acknowledgements

K. Song appreciates the support of the China Scholarship Council. H. P. Song and C. F. Gao acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 11872203 and 11202099), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Schiavone thanks the Natural Sciences and Engineering Research Council of Canada for their support through a Discovery Grant (Grant # RGPIN 155112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Schiavone or C. F. Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, K., Song, H.P., Schiavone, P. et al. Effective conductivity and the effect of electric current on thermal stress around an arbitrarily shaped inhomogeneity. Arch Appl Mech 89, 2449–2461 (2019). https://doi.org/10.1007/s00419-019-01588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01588-z

Keywords

Navigation