Skip to main content
Log in

Static and dynamic responses of suspended arch bridges due to failure of cables

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A mathematical model is proposed to investigate the behavior of a suspended arch bridge, subjected to sudden failure of cables. The main aim of this study is to analyze the effects produced by potential cables failure scenarios on the deformations and stresses of the bridge. The studied suspended arch bridge has a dense arrangement of cables, but the method described herein may be easily extended to the case of a sparse arrangement of cables. The theoretical formulation is based on a continuum approach, which has been used in the literature to analyze such bridges. Finally, the equations obtained are solved using the Duhamel’s integrals and the Laplace transform. For an exemplary bridge, results are obtained for the cases of failure of one, two and five cables, and important conclusions for structural design purposes are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area

E :

Modulus of elasticity of steel material (deck and arch)

G :

Shear modulus

H(x):

Heaviside function

\(I_c\) :

Moment of inertia of the arch at the mid-span section

\(I_y\) :

Moment of inertia with respect to y-axis

\(I_z\) :

Moment of inertia with respect to z-axis

\(I_{\omega }\) :

Warping resistance of the deck

\(J_{px}\) :

Rotational mass moment of inertia of the deck

\(I_D\) :

Saint-Venant torsional moment of inertia

L :

Length of the bridge structure

R :

Average geometrical radius of the arch

R(t):

Modal amplitudes

T(t):

Modal amplitudes

UWZ :

Shape functions

a :

Subscript denoting properties of the arch

b :

Half-width of the deck

c :

Subscript denoting properties of the cables

d :

Subscript denoting properties of the deck

\(f_0\) :

Sag of the arch at the middle of the bridge span

\(f_z(t)\) :

Time functions

m :

Mass per unit length

\(m_x\) :

External moment acting on the deck

\(p_y\) :

External applied force with respect to y-axis, acting on the deck

\(p_z\) :

External applied force with respect to z-axis, acting on the deck

\(q_c\) :

Stress per unit length of cables

\(q_1\) :

Stress per unit length of the left line of cables

\(q_2\) :

Stress per unit length of the right line of cables

\(q_z(x)\) :

Forces developing on the cables

xyz :

Axes designation

w :

Vertical displacement

z(x):

Length of the cables at position x

\(\varphi _d\) :

Rotational deformation of the arch

\(\upsilon \) :

Horizontal displacement

\(\Phi \) :

Modal amplitudes

References

  1. Johnston, B.G.: Guide to Stability Design Criteria for Metal Structures. Structural Stability Research Council, 3rd edn. Wiley, Hoboken (1976)

    Google Scholar 

  2. Bergmeister, K., Capsoni, A., Corradi, L., Menardo, A.: Lateral elastic stability of slender arches for bridges including deck slenderness. Struct. Eng. Int. 19(2), 149–154 (2009). https://doi.org/10.2749/101686609788220259

    Article  Google Scholar 

  3. Pircher, M., Stacha, M., Wagner, J.: Stability of network arch bridges under traffic loading. Proc. Inst. Civ. Eng. Bridge Eng. 166(3), 186–192 (2013). https://doi.org/10.1680/bren.11.00027

    Article  Google Scholar 

  4. Wang, Y., Liu, C., Liang, Y., Zhang, S.: Nonlinear stability analysis and completed bridge test on slanting type CFST arch bridges. J. Build. Struct. 36, 107–113 (2015)

    Google Scholar 

  5. Zhu, X.-L., Sun, D.-B.: Nonlinear in-plane stability and catastrophe analysis of shallow arches. J. Vib. Shock 35(6), 47–51 (2016)

    Google Scholar 

  6. Bruno, D., Lonetti, P., Pascuzzo, A.: An optimization model for the design of network arch bridges. Comput. Struct. 170, 13–25 (2016). https://doi.org/10.1016/j.compstruc.2016.03.011

    Article  Google Scholar 

  7. Mannini, C., Belloli, M., Marra, A.M., et al.: Aeroelastic stability of two long-span arch structures: a collaborative experience in two wind tunnel facilities. Eng. Struct. 119, 252–263 (2016). https://doi.org/10.1016/j.engstruct.2016.04.014

    Article  Google Scholar 

  8. Zhang, Z.-C.: Creep analysis of long span concrete-filled steel tubular arch bridges. Gongcheng Lixue/Eng. Mech. 24(5), 151–160 (2007)

    Google Scholar 

  9. Shao, X., Peng, J., Li, L., Yan, B., Hu, J.: Time-dependent behavior of concrete-filled steel tubular arch bridge. J. Bridge Eng. (ASCE) 15(1), 98–107 (2010). https://doi.org/10.1061/(ASCE)1084-0702(2010)15:1(98)

    Article  Google Scholar 

  10. Loghman, A., Ghorbanpour Arani, A., Shajari, A.R., Amir, S.: Time-dependent thermoelastic creep analysis of rotating disk made of Al–SiC composite. Arch. Appl. Mech. 81(12), 1853–1864 (2011). https://doi.org/10.1007/s00419-011-0522-3

    Article  MATH  Google Scholar 

  11. Lai, X.-Y., Li, S.-Y., Chen, B.-C.: The influence of addictives on the creep of concrete-filled steel tube. Harbin Gongye Daxue Xuebao/J. Harbin Inst. Technol. 44(SUPPL.1), 248–251 (2012)

    Google Scholar 

  12. Granata, M.F., Arici, M.: Serviceability of segmental concrete arch-frame bridges built by cantilevering. Bridge Struct. 9(1), 21–36 (2013)

    Google Scholar 

  13. Ma, Y.S., Wang, Y.F.: Creep effects on the reliability of a concrete-filled steel tube arch bridge. J. Bridge Eng. (ASCE) 18(10), 1095–1104 (2013). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000446

    Article  Google Scholar 

  14. Zhou, Y.: Concrete creep and thermal effects on the dynamic behavior of a concrete-filled steel tube arch bridge. J. Vibroeng. 16(4), 1735–1744 (2014)

    Google Scholar 

  15. Bradford, M.A., Pi, Y.-L.: Geometric nonlinearity and long-term behavior of crown-pinned CFST arches. J. Struct. Eng. (ASCE) (2015). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001163

    Article  Google Scholar 

  16. Li, J.-B., Ge, S.-J., Chen, H.: Seismic behavior analysis of a 5-span continuous half-through CFST arch bridge. World Inf. Earthq. Eng. 21(3), 110–115 (2005)

    Google Scholar 

  17. Álvarez, J.J., Aparicio, A.C., Jara, J.M., Jara, M.: Seismic assessment of a long-span arch bridge considering the variation in axial forces induced by earthquakes. Eng. Struct. 34, 69–80 (2012). https://doi.org/10.1016/j.engstruct.2011.09.013

    Article  Google Scholar 

  18. Huang, F.-Y., Chen, B.-C., Li, J.-Z., Cheng, H.-D.: Shaking tables testing of concrete filled steel tubular single arch rib model under the excitation of rare earthquakes. Gongcheng Lixue/Eng. Mech. 32(7), 64–73 (2015)

    Google Scholar 

  19. Sevim, B., Atamturktur, S., Altunişik, A.C., Bayraktar, A.: Ambient vibration testing and seismic behavior of historical arch bridges under near and far fault ground motions. Bull. Earthq. Eng. 14(1), 241–259 (2016). https://doi.org/10.1007/s10518-015-9810-6

    Article  Google Scholar 

  20. Lei, S., Gao, Y., Pan, D.: An optimization solution of Rayleigh damping coefficients on arch bridges with closely-spaced natural frequencies subjected to seismic excitations. J. Harbin Inst. Technol. 47(12), 123–128 (2015)

    Google Scholar 

  21. Drosopoulos, G.A., Stavroulakis, G.E., Massalas, C.V.: Influence of the geometry and the abutments movement on the collapse of stone arch bridges. Constr. Build. Mater. 22(3), 200–210 (2008). https://doi.org/10.1016/j.conbuildmat.2006.09.001

    Article  Google Scholar 

  22. Liu, B., Yang, C., Zhou, K.: Effect of springing displacement on mechanical performance of the buried corrugated steel arch bridge. J. Wuhan Univ. Technol. (Transp. Sci. Eng.) 36(3), 441–444 (2012)

    Google Scholar 

  23. Liu, S.-M., Wang, Z.-X., Zhu, C.: Method of temporarily carrying heavy vehicle on masonry arch bridge without strengthening. J. Beijing Univ. Technol. 41(10), 1559–1565 (2015)

    Google Scholar 

  24. Yau, J.-D.: Vibration of parabolic tied-arch beams due to moving loads. Int. J. Struct. Stab. Dyn. 6(2), 193–214 (2006). https://doi.org/10.1142/S0219455406001915

    Article  MathSciNet  Google Scholar 

  25. Yang, J.-X., Chen, W.-Z., Gu, R.: Analysis of dynamic characteristics of short hangers of arch bridge. Bridge Constr. 44(3), 13–18 (2014)

    Google Scholar 

  26. Nikkhoo, A., Kananipour, H.: Numerical solution for dynamic analysis of semicircular curved beams acted upon by moving loads. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228(13), 2314–2322 (2014). https://doi.org/10.1177/0954406213518908

    Article  Google Scholar 

  27. Türker, T., Bayraktar, A.: Structural safety assessment of bowstring type RC arch bridges using ambient vibration testing and finite element model calibration. Measurement 58, 33–45 (2014). https://doi.org/10.1016/j.measurement.2014.08.002

    Article  Google Scholar 

  28. Calçada, R., Cunha, A., Delgado, R.: Dynamic analysis of metallic arch railway bridge. J. Bridge Eng. 7(4), 214–222 (2002). https://doi.org/10.1061/(ASCE)1084-0702(2002)7:4(214)

    Article  Google Scholar 

  29. Chen, S., Tang, Y., Huang, W.-J.: Visual vibration simulation of framed arch bridge under multi-vehicle condition. Gongcheng Lixue/Eng. Mech. 22(1), 218–222 (2005)

    Google Scholar 

  30. Wallin, J., Leander, J., Karoumi, R.: Strengthening of a steel railway bridge and its impact on the dynamic response to passing trains. Eng. Struct. 33(2), 635–646 (2011). https://doi.org/10.1016/j.engstruct.2010.11.022

    Article  Google Scholar 

  31. Lepidi, M., Gattulli, V., Vestroni, F.: Static and dynamic response of elastic suspended cables with damage. Int. J. Solids Struct. 44(25), 8194–8212 (2007). https://doi.org/10.1016/j.ijsolstr.2007.06.009

    Article  MATH  Google Scholar 

  32. Mapelli, C., Barella, S.: Failure analysis of a cableway rope. Eng. Fail. Anal. 16(5), 1666–1673 (2009). https://doi.org/10.1016/j.engfailanal.2008.12.011

    Article  Google Scholar 

  33. Mahmoud, K.M.: Fracture strength for a high strength steel bridge cable wire with a surface crack. Theor. Appl. Fract. Mech. 48(2), 152–160 (2007). https://doi.org/10.1016/j.tafmec.2007.05.006

    Article  Google Scholar 

  34. Li, C.X., Tang, X.S., Xiang, G.B.: Fatigue crack growth of cable steel wires in a suspension bridge: multiscaling and mesoscopic fracture mechanics. Theor. Appl. Fract. Mech. 53(2), 113–126 (2019). https://doi.org/10.1016/j.tafmec.2010.03.002

    Article  Google Scholar 

  35. Materazzi, A.L., Ubertini, F.: Eigenproperties of suspension bridges with damage. J. Sound Vib. 330(26), 6420–6434 (2011). https://doi.org/10.1016/j.jsv.2011.08.007

    Article  Google Scholar 

  36. Greco, T., Lonetti, P., Pascuzzo, A.: Dynamic analysis of cable-stayed bridges affected by accidental failure mechanisms under moving loads. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/302706

    Article  MathSciNet  Google Scholar 

  37. Lonetti, P., Pascuzzo, A.: Vulnerability and failure analysis of hybrid cable-stayed suspension bridges subjected to damage mechanisms. Eng. Fail. Anal. 45, 470–495 (2014). https://doi.org/10.1016/j.engfailanal.2014.07.002

    Article  Google Scholar 

  38. Aoki, Y., Valipour, H., Samali, B., Saleh, A.: A study on potential progressive collapse responses of cable-stayed bridges. Adv. Struct. Eng. 16(4), 689–706 (2013). https://doi.org/10.1260/1369-4332.16.4.689

    Article  Google Scholar 

  39. Haubans, S.E.T.R.A.: Recommandations de la Commission Interministérielle de la Précontrainte. Service d’ Etudes Techniques des Routes et Autoroutes, France (2001)

    Google Scholar 

  40. P.T.I.: Recommendations for Stay Cable Design, Testing and Installation. Post-Tensioning Institute, DC45.1-12, USA (2012)

  41. Mozos, C.M.: Theoretical and experimental study on the structural response of cable stayed bridges to a stay failure. Dissertation, Universidad de Castilla-La Manche (2007)

  42. Del Olmo, C.M.M., Bengoechea, A.C.A.: Cable stayed bridges. Failure of a stay: dynamic and pseudo-dynamic analysis of structural behaviour. In: Proceedings of the 3rd International Conference on Bridge Maintenance, Safety and Management, 16–19 July 2006, Porto, Portugal, CRC Press

  43. Mozos, C.M., Aparicio, A.C.: Parametric study on the dynamic response of cable stayed bridges to the sudden failure of a stay. Part I: bending moment acting on the deck. Eng. Struct. 32(10), 3288–3300 (2010). https://doi.org/10.1016/j.engstruct.2010.07.003

    Article  Google Scholar 

  44. Mozos, C.M., Aparicio, A.C.: Parametric study on the dynamic response of cable stayed bridges to the sudden failure of a stay. Part II: bending moment acting on the pylons and stress on the stays. Eng. Struct. 32(10), 3301–3312 (2010). https://doi.org/10.1016/j.engstruct.2010.07.002

    Article  Google Scholar 

  45. Mozos, C.M., Aparicio, A.C.: Static strain energy and dynamic amplification factor on multiple degree of freedom systems. Eng. Struct. 31(11), 2756–2765 (2009). https://doi.org/10.1016/j.engstruct.2009.07.003

    Article  Google Scholar 

  46. Ruiz-Teran, A.M., Aparicio, A.C.: Dynamic amplification factors in cable-stayed structures. J. Sound Vib. 300(1–2), 197–216 (2007). https://doi.org/10.1016/j.jsv.2006.07.028

    Article  Google Scholar 

  47. Wolff, M., Starossek, U.: Cable loss and progressive collapse in cable-stayed bridges. Bridge Struct. 5, 17–28 (2009). https://doi.org/10.1080/15732480902775615

    Article  Google Scholar 

  48. Starossek, U.: Avoiding disproportional collapse of major bridges. Struct. Eng. Int. 19(3), 289–297 (2009). https://doi.org/10.2749/101686609788957838

    Article  Google Scholar 

  49. Konstantakopoulos, T.G., Michaltsos, G.T.: Suspended arch bridges under moving loads—the 2D mathematical model. Int. J. Bridge Eng. 6(1), 91–105 (2018)

    Google Scholar 

  50. Kounadis, A.N.: An efficient and simple approximate technique for solving nonlinear initial and boundary-value problems. Comput. Mech. 9(3), 221–231 (1992). https://doi.org/10.1007/BF00350188

    Article  MathSciNet  MATH  Google Scholar 

  51. Panagiotopoulos, P.: Hemivariational Inequalities: Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Book  Google Scholar 

  52. Mistakidis, E.S., Stavroulakis, G.E.: Nonconvex Optimization in Mechanics: Smooth and Nonsmooth Algorithms, Heuristic and Engineering Applications. Kluwer, London (1998)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sophianopoulos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sophianopoulos, D.S., Michaltsos, G.T. & Cholevas, H.I. Static and dynamic responses of suspended arch bridges due to failure of cables. Arch Appl Mech 89, 2281–2312 (2019). https://doi.org/10.1007/s00419-019-01576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01576-3

Keywords

Navigation