Skip to main content
Log in

Simulation of magnetised microstructure evolution based on a micromagnetics-inspired FE framework: application to magnetic shape memory behaviour

  • SPECIAL
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Microstructure evolution in magnetic materials is typically a non-local effect, in the sense that the behaviour at a material point depends on the magnetostatic energy stored within the demagnetisation field in the entire domain. To account for this, we propose a finite element framework in which the internal state variables parameterising the magnetic and crystallographic microstructure are treated as global fields, optimising a global potential. Contrary to conventional micromagnetics, however, the microscale is not spatially resolved and exchange energy terms are neglected in this approach. The influence of microstructure evolution is rather incorporated in an effective manner, which allows the computation of meso- and macroscale problems. This approach necessitates the development and implementation of novel mixed finite element formulations. It further requires the enforcement of inequality constraints at the global level. To handle the latter, we employ Fischer–Burmeister complementarity functions and introduce the associated Lagrange multipliers as additional nodal degrees-of-freedom. As a particular application of this general methodology, a recently established energy-relaxation-based model for magnetic shape memory behaviour is implemented and tested. Special cases—including ellipsoidal specimen geometries—are used to verify the magnetisation and field-induced strain responses obtained from finite element simulations by comparison to calculations based on the demagnetisation factor concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allik, H., Hughes, T.J.R.: Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 2, 151–157 (1970)

    Article  Google Scholar 

  2. Arockiarajan, A., Menzel, A., Delibas, B., Seemann, W.: Computational modeling of rate-dependent domain switching in piezoelectric materials. Eur. J. Mech. A Solids 25, 950–964 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ask, A., Menzel, A., Ristinmaa, M.: Electrostriction in electro-viscoelastic polymers. Mech. Mater. 50, 9–21 (2012)

    Article  Google Scholar 

  4. Bartel, T., Hackl, K.: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. Zeitschrift für Angewandte Mathematik und Mechanik 89, 792–809 (2009)

    Article  MATH  Google Scholar 

  5. Bartel, T., Menzel, A.: Modelling and simulation of cyclic thermomechanical behaviour of NiTi wires using a weak discontinuity approach. Int. J. Fract. 202, 281–293 (2016)

    Article  Google Scholar 

  6. Bartel, T., Menzel, A., Svendsen, B.: Thermodynamic and relaxation-based modeling of the interaction between martensitic phase transformations and plasticity. J. Mech. Phys. Solids 59(5), 1004–1019 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartels, A., Mosler, J.: Efficient variational constitutive updates for Allen–Cahn-type phase field theory coupled to continuum mechanics. Comput. Methods Appl. Mech. Eng. 317, 55–83 (2017)

    Article  MathSciNet  Google Scholar 

  8. Biot, M.A.: Mechanics of Incremental Deformations. Wiley, New York (1965)

    Book  Google Scholar 

  9. Brown Jr., W.F.: Micromagnetics, Interscience Tracts on Physics and Astronomy, vol. 18. Wiley, New York (1963)

    Google Scholar 

  10. Brown Jr., W.F.: Magnetoelastic Interactions, Tracts in Natural Philosophy, vol. 9. Springer, New York (1966)

    Book  Google Scholar 

  11. Bustamante, R., Dorfmann, A., Ogden, R.W.: Numerical solution of finite geometry boundary-value problems in nonlinear magnetoelasticity. Int. J. Solids Struct. 48(6), 874–883 (2011)

    Article  MATH  Google Scholar 

  12. Canadija, M., Mosler, J.: On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. Int. J. Sol. Struct. 48, 1120–1129 (2011)

    Article  MATH  Google Scholar 

  13. Chen, X., Moumni, Z., He, Y., Zhang, W.: A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys. J. Mech. Phys. Solids 64, 249–286 (2014)

    Article  MathSciNet  Google Scholar 

  14. DeSimone, A.: Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125, 99–143 (1993)

    Article  MathSciNet  Google Scholar 

  15. DeSimone, A.: Coarse-grained models of materials with non-convex free-energy: two case studies. Comput. Methods Appl. Mech. Eng. 193(48–51), 5129–5141 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. DeSimone, A., James, R.D.: A constrained theory of magnetoelasticity. J. Mech. Phys. Solids 50(2), 283–320 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Recent analytical developments in micromagnetics. In: Bertorti, G., Mayergoyz, I. (eds.) The Science of Hysteresis, Volume II: Physical Modeling, Micromagnetics, and Magnetization Dynamics, Chap. 4, pp. 269–381. Elsevier, Amsterdam (2006)

    Google Scholar 

  18. Dusthakar, D.K., Menzel, A., Svendsen, B.: Laminate-based modelling of single and polycrystalline ferroelectric materials—application to tetragonal barium titanate. Mech. Mater. 117, 235–254 (2018)

    Article  Google Scholar 

  19. Edelen, D.G.B.: On the existence of symmetry relations and dissipation potentials. Arch. Rat. Mech. Anal. 51, 218–227 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ge, Y., Heczko, O., Söderberg, O., Lindroos, V.: Various magnetic domain structures in a Ni–Mn–Ga martensite exhibiting magnetic shape memory effect. J. Appl. Phys. 96, 2159–2163 (2004)

    Article  Google Scholar 

  22. Haldar, K., Kiefer, B., Lagoudas, D.C.: Finite element analysis of the demagnetization effect and stress inhomogeneities in magnetic shape memory alloy samples. Philos. Mag. 91(32), 4126–4157 (2011)

    Article  Google Scholar 

  23. Haldar, K., Kiefer, B., Menzel, A.: Finite element simulation of rate-dependent magneto-active polymer response. Smart Mater. Struct. 25(10), 104003 (2016)

    Article  Google Scholar 

  24. Heczko, O.: Magnetic shape memory effect and magnetization reversal. J. Magn. Magn. Mater. 290–291(2), 787–794 (2005)

    Article  Google Scholar 

  25. Heczko, O., Straka, L., Ullakko, K.: Relation between structure, magnetization process and magnetic shape memory effect of various martensites occurring in Ni–Mn–Ga alloys. J. Phys. IV 112, 959–962 (2003)

    Google Scholar 

  26. Hwang, C.S., McMeeking, M.R.: A finite element model of ferroelastic polycrystals. Ferroelectrics 211, 177–194 (1998)

    Article  MATH  Google Scholar 

  27. James, R.D., Kinderlehrer, D.: Theory of magnetostriction with applications to \(\rm Tb_xDy_{1-x}Fr_2\). Philos. Mag. B 68(2), 237–274 (1993)

    Article  Google Scholar 

  28. Javili, A., Chatzigeorgiou, G., Steinmann, P.: Computational homogenization in magneto-mechanics. Int. J. Solids Struct. 50(25–26), 4197–4216 (2013)

    Article  Google Scholar 

  29. Kaliappan, J., Menzel, A.: Modelling of non-linear switching effects in piezoceramics: a three-dimensional polygonal finite-element-based approach applied to oligo-crystals. J. Intell. Mater. Syst. Struct. 26(17), 2322–2337 (2015)

    Article  Google Scholar 

  30. Kamlah, M., Böhle, U.: Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int. J. Solids Struct. 38, 605–633 (2001)

    Article  MATH  Google Scholar 

  31. Kazaryan, A., Wang, Y., Jin, Y.M., Wang, Y.U., Khachaturyan, A.G., Wang, L., Laughlin, D.E.: Development of magnetic domains in hard ferromagnetic thin films of polytwinned microstructure. J. Appl. Phys. 92(12), 7408–7414 (2002)

    Article  Google Scholar 

  32. Kiefer, B.: A phenomenological constitutive model for magnetic shape memory alloys. Ph.D. dissertation, Department of Aerospace Engineering, Texas A&M University, College Station, TX (2006)

  33. Kiefer, B., Bartel, T., Menzel, A.: Implementation of numerical integration schemes for the simulation of magnetic sma constitutive response. Smart Mater. Struct. 21(9), 094007 (2012)

    Article  Google Scholar 

  34. Kiefer, B., Buckmann, K., Bartel, T.: Numerical energy relaxation to model microstructure evolution in functional magnetic materials. GAMM Mitt. 38(1), 171–196 (2015)

    Article  MathSciNet  Google Scholar 

  35. Kiefer, B., Lagoudas, D.C.: Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. Spec. Issue Recent Adv. Theor. Mech. 85(33–35), 4289–4329 (2005)

    Google Scholar 

  36. Kiefer, B., Lagoudas, D.C.: Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading. J. Intelli. Mater. Syst. Struct. 20(2), 143–170 (2009)

    Article  Google Scholar 

  37. Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1996)

    MATH  Google Scholar 

  38. Landis, C.M.: A new finite element formulation for electromechanical boundary value problems. Int. J. Numer. Methods Eng. 55(5), 613–628 (2002)

    Article  MATH  Google Scholar 

  39. Linnemann, K., Klinkel, S., Wagner, W.: A constitutive model for magnetostrictive and piezoelectric materials. Int. J. Solids Struct. 46, 1149–1166 (2009)

    Article  MATH  Google Scholar 

  40. Menzel, A., Denzer, R., Steinmann, P.: On the comparison of two approaches to compute material forces for inelastic materials. Application to single-slip crystal–plasticity. Comput. Methods Appl. Mech. Eng. 193(48–51), 5411–5428 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Miehe, C.: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Methods Eng. 55(11), 1285–1322 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Miehe, C., Ethiraj, G.: A geometrically consistent incremental variational formulation for phase field models in micromagnetics. Comput. Methods Appl. Mech. Eng. 245–246, 331–347 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Miehe, C., Kiefer, B., Rosato, D.: An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level. Int. J. Solids Struct. 48(13), 1846–1866 (2011)

    Article  Google Scholar 

  44. Miehe, C., Rosato, D., Kiefer, B.: Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int. J. Numer. Methods Eng. 86(10), 1225–1276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. O’Handley, R.C.: Modern Magnetic Materials. Wiley, New York (2000)

    Google Scholar 

  46. Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–444 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Schmidt-Baldassari, M.: Numerical concepts for rate-independent single crystal plasticity. Comput. Methods Appl. Mech. Eng. 192, 1261–1280 (2003)

    Article  MATH  Google Scholar 

  48. Schrefl, T.: Finite elements in numerical micromagnetics part I: granular hard magnets. J. Magn. Magn. Mater. 207, 45–65 (1999)

    Article  Google Scholar 

  49. Schrefl, T.: Finite elements in numerical micromagnetics part II: patterned magnetic elements. J. Magn. Magn. Mater. 207, 66–77 (1999)

    Article  Google Scholar 

  50. Schröder, J., Romanowski, H.: A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting. Arch. Appl. Mech. 74, 863–877 (2005)

    Article  MATH  Google Scholar 

  51. Straka, L., Heczko, O.: Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic fields. J. Magn. Magn. Mater. 290–291(2), 829–831 (2005)

    Article  Google Scholar 

  52. Straka, L., Heczko, O., Novak, V., Lanska, N.: Study of austenite–martensite transformation in Ni–Mn–Ga magnetic shape memory alloy. J. Phys. IV 112, 911–915 (2003)

    Google Scholar 

  53. Thylander, S., Menzel, A., Ristinmaa, M.: A non-affine electro-viscoelastic micro-sphere model for dielectric elastomers: application to VHB 4910 based actuators. J. Intell. Mater. Syst. Struct. 28(5), 627–639 (2017)

    Article  Google Scholar 

  54. Tickle, R.: Ferromagnetic shape memory materials. Ph.D. dissertation, University of Minnesota (2000)

  55. Tickle, R., James, R.D.: Magnetic and magnetomechanical properties of Ni\(_2\)MnGa. J. Magn. Magn. Mater. 195(3), 627–638 (1999)

    Article  Google Scholar 

  56. Wang, J., Steinmann, P.: On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. II: numerical algorithm. Contin. Mech. Thermodyn. 28(3), 669–698 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ziegler, H.: Some Extremum Principles in Irreversible Thermodynamics with Application to Continuum Mechanics. No. IV in Progress in Solid Mechanics. North-Holland, Amsterdam (1963)

    Google Scholar 

Download references

Acknowledgements

The financial support by the German Research Foundation (DFG) through the Research Unit 1509: Ferroic Functional Materials: Multi-Scale Modeling and Experimental Characterization, project P7 (KI 1392/4-2, BA 4195/2-2), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Bartel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In previous works, see, for example, [34], the magnetic state of the underlying two-dimensional microstructure was parametrised by using the net magnetisations \(\eta _i\) of both martensite variants, the deviations of the magnetisation vectors from the magnetic easy axes characterised by angles \(\theta _j\) in each of the four magnetic domains, and the martensite volume fractions \(\xi _i\). Results of numerical simulations suggested that the deviations of the magnetisation vectors within one martensite variant are not independent, since the optimal deviations were \(\theta _2\!=\!-\theta _1\) and \(\theta _4\!=\!-\theta _3\). This relation can be shown analytically, allowing a reparametrisation of the underlying microstructure by simultaneously decreasing the number of constraints. In the following derivations, only one variant of martensite is considered, i.e. \(\xi _1\!=\!1\). The second martensite variant may be treated analogously.

In the first step, the effective magnetisation of the first martensite variant \({\varvec{m}}^{*}_1\) is defined as

$$\begin{aligned} {\varvec{m}}^{*}_1 = \gamma _1\,[\cos (\theta _1)\,\varvec{e}_1+\sin (\theta _1)\,{\varvec{e}}_2] + [1-\gamma _1]\,[-\cos (\theta _2)\,\varvec{e}_1-\sin (\theta _2)\,{\varvec{e}}_2], \end{aligned}$$
(71)

where \(\gamma _i\!=\!0.5\,[\,\eta _i/\xi _i + 1\,]\), with \(0 \!\le \!\gamma _i\!\le \! 1\), denote the magnetic domain volume fractions and \(-\pi /2\!\le \!\theta _j\!\le \!\pi /2\). Note that here magnetisation vectors are introduced for each domain of one martensite variant, whereas in the modelling framework described in Sect. 3 an effective magnetisation vector for the whole variant is used. This approach is interpretable as the introduction of a plane spanned by the magnetisations of the two domains \({\varvec{m}}_j\), where several combinations of those and the domain volume fraction \(\gamma _1\) yield the same effective magnetisation \({\varvec{m}}^{*}_1\). It is assumed that the angle \(\theta _2\) minimises the anisotropy energy density. In the following, \(\gamma _1\!\ne \!0\) and \(\gamma _1\!\ne \!1\) shall hold, i.e. both domains exist, and \(\theta _j\!\ne \!\pm \pi /2\). The anisotropy energy density of the first martensite variant (\(\xi _1\!=\!1\), \(\eta _1\) replaced by \(\gamma _1\)) \(\psi ^{\,\mathrm {an}}_1\!=\!\gamma _1\,\sin ^2(\theta _1) + [\,1-\gamma _1\,]\,\sin ^2(\theta _2)\) is reformulated using (71) via

$$\begin{aligned} \frac{\psi ^{\,\mathrm {an}}_1}{k_1} = \frac{m_{12}^2 + 2\,m_{12}\,[\,1-\gamma _1\,]\,\sin (\theta _2) + [\,1-\gamma _1\,]\,\sin ^2(\theta _2)}{\gamma _1}. \end{aligned}$$
(72)

The partial derivative of (72) w.r.t. \(\theta _2\) results in

$$\begin{aligned} \frac{1}{k_1}\,\frac{\partial \psi ^{\,\mathrm {an}}_1}{\partial \theta _2} = \frac{2\,[\,1-\gamma _1\,]}{\gamma _1}\,\cos (\theta _2)\,\left[ \,m_{12} + \sin (\theta _2)\,\right] . \end{aligned}$$
(73)

The necessary condition for a minimum w.r.t. \(\theta _2\) states \(\partial _{\theta _2} \psi ^{\,\mathrm {an}}_1\!=\!0\), which, under the assumptions mentioned above, is always satisfied for \(m_{12}\!=\!-\sin (\theta _2)\) or \(\cos (\theta _2)\!=\!0\). The second partial derivative of (72) w.r.t. \(\theta _2\), i.e.

$$\begin{aligned} \frac{1}{k_1}\,\frac{\partial ^2 \psi ^{\,\mathrm {an}}_1}{\partial \theta _2^2} = \frac{2\,[\,1-\gamma _1\,]}{\gamma _1}\,\left[ \,\cos ^2(\theta _2) - \sin (\theta _2)\,\left[ \,m_{12} + \sin (\theta _2)\,\right] \,\right] \end{aligned}$$
(74)

is used to check the sufficient condition for a minimum, respectively, maximum. Insertion of \(m_{12}\!=\!-\sin (\theta _2)\) into (74) yields

$$\begin{aligned} k_1\,\frac{2\,[\,1-\gamma _1\,]}{\gamma _1}\,\cos ^2(\theta _2) > 0,\quad \text {for}\quad \cos (\theta _2)\ne 0, \end{aligned}$$
(75)

viz. the sufficient condition for a minimum. The insertion of \(\cos (\theta _2)\!=\!0\) into (74) yields

$$\begin{aligned} k_1\,\frac{2\,[\,1-\gamma _1\,]}{\gamma _1}\,\left[ \,-\sin ^2(\theta _2) - \sin (\theta _2)\,m_{12}\,\right]< 0,\quad \text {for}\quad -1< m_{12} < 1, \end{aligned}$$
(76)

viz. the sufficient condition for a maximum. Since (71) must be fulfilled, the cases \(\cos (\theta _2)\!=\!0, m_{12}\!=\!-1\) and \(m_{12}\!=\!1\) yield either \(\theta _2\!=\!-\theta _1\) or \(\gamma _1\!=\!0\), respectively, \(\gamma _1\!=\!1\), which was excluded in the assumptions mentioned above. As a consequence, the anisotropy-related energy density is minimised for a given effective magnetisation \({\varvec{m}}^{*}_1\) with \(\theta _2\!=\!-\theta _1\). The derivation for the second martensite variant follows by analogy and yields \(\theta _4\!=\!-\theta _3\). Note that the number of state variables can therefore be reduced by two: instead of \([\,\eta _1, \eta _2, \theta _1, \theta _2, \theta _3, \theta _4\,]^{\,\mathrm {t}}\), the new set of variables \([\,m_{11}, m_{12}, m_{21}, m_{22}\,]^{\,\mathrm {t}}\) is used for the FE implementation, where, in addition, the number of inequality constraints is reduced from 14 to four.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckmann, K., Kiefer, B., Bartel, T. et al. Simulation of magnetised microstructure evolution based on a micromagnetics-inspired FE framework: application to magnetic shape memory behaviour. Arch Appl Mech 89, 1085–1102 (2019). https://doi.org/10.1007/s00419-018-1482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1482-7

Keywords

Navigation