Skip to main content
Log in

Hysteretic beam element with degrading smooth models

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This work presents the development of a hysteretic beam element in the context of the finite element method, that is suitable for the inelastic dynamic analysis of framed structures. The formulation proposed is able to capture the main characteristics of hysteresis in structural systems and mainly accounts for stiffness degradation, strength deterioration and pinching phenomena, as well as for non-symmetrical yielding that often characterizes their behavior. The proposed formulation is based on the decoupling of deformations into elastic and hysteretic parts by considering additional hysteretic degrees of freedom, i.e., the hysteretic curvatures and hysteretic axial deformations. The direct stiffness method is employed to establish global matrices and determine the mass and viscous damping, as well as the elastic stiffness and the hysteretic matrix of the structure that corresponds to the newly added hysteretic degrees of freedom. All the governing equations of the structure, namely the linear global equations of motion and the nonlinear evolution equations at elemental level that account for degradations and pinching, are solved simultaneously. This is accomplished by converting the system of equations into state space form and implementing a variable-order solver based on numerical differentiation formulas (NDFs) to determine the solution. Furthermore, hysteretic loops and degradation phenomena are easily controlled by modifying the model parameters at the element level enabling simulations of a more realistic response. Numerical results are presented and compared against experimental results and other finite element codes to validate the proposed formulation and verify its ability to simulate complex hysteretic behavior exhibiting cyclic degradations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Andriotis, C., Gkimousis, I., Koumousis, V.K.: Modeling reinforced concrete structures using smooth plasticity and damage models. J. Struct. Eng. (2016). doi:10.1061/(ASCE)ST.1943-541X.0001365

    Google Scholar 

  2. Baber, T.T., Noori, M.N.: Random vibration of degrading pinching systems. J. Eng. Mech. 11(8), 1010–1026 (1985)

    Article  Google Scholar 

  3. Baber, T.T., Wen, Y.K.: Random vibration of hysteretic degrading systems. J. Eng. Mech. 107(6), 1069–1087 (1981)

    Google Scholar 

  4. Bathe, K.J.: Finite Element Procedures. Prentice Hall Engineering, New York (2007)

    MATH  Google Scholar 

  5. Bouc, R.: Forced vibration of mechanical system with hysteresis. In: Proceedings of the 4th Conference on Nonlinear Oscillations, Prague (1967)

  6. Charalampakis, A.E., Dimou, C.K.: Identification of Bouc–Wen hysteretic systems using particle swarm optimization. Comput. Struct. 88(21–22), 1197–1205 (2010)

    Article  Google Scholar 

  7. Charalampakis, A.E., Koumousis, V.K.: Identification of Bouc–Wen hysteretic systems by a hybrid evolutionary algorithm. J. Sound Vib. 314(3–5), 571–585 (2008)

    Article  MATH  Google Scholar 

  8. Charalampakis, A.E., Koumousis, V.K.: A Bouc–Wen model compatible with plasticity postulates. J. Sound Vib. 322, 954–968 (2009)

    Article  Google Scholar 

  9. Chatzi, E.N., Smyth, A.W.: The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Struct. Control Health Monit. 16(1), 99–123 (2009)

    Article  Google Scholar 

  10. Christos, S.D., Vlasis, K.K.: Plane stress problems using hysteretic rigid body spring network models. Comput. Part. Mech. (2016). doi:10.1007/s40571-016-0128-1

    Google Scholar 

  11. Clough, R.W.: Effects of stiffness degradation on earthquake ductility requirements. Technical Report No. 66-16. University of California, Berkeley (1966)

  12. Erlicher, S., Bursi, O.S.: Bouc–Wen-type models with stiffness degradation: thermodynamic analysis and applications. J. Eng. Mech. 134(10), 843–855 (2009)

    Article  Google Scholar 

  13. Erlicher, S., Point, N.: Thermodynamic admissibility of Bouc–Wen type hysteresis models. C. R. Mec. 332(1), 51–57 (2004)

    Article  MATH  Google Scholar 

  14. FEMA: Effects of strength and stiffness degradation on seismic response. Report No. FEMA-P440A, Prepared for the Federal Emergency Management Agency by the Advanced Technology Council, Washington, DC (2009)

  15. Foliente, G.C.: Hysteresis modelling of wood joints and structural systems. J. Struct. Eng. 121(6), 1013–1022 (1995)

    Article  Google Scholar 

  16. Gkimousis, I.A., Koumousis, V.K.: Inelastic mixed fiber beam element for steel cyclic behavior. Eng. Struct. 106, 399–409 (2016)

    Article  Google Scholar 

  17. Ikhouane, F., Hurtado, J.E., Rodellar, J.: Variation of the hysteresis loop with the Bouc–Wen model parameters. Nonlinear Dyn. 48(4), 361–380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ikhouane, F., Rodellar, J.: On the hysteretic Bouc–Wen model. Part I: forced limit cycle characterization. Nonlinear Dyn. 42, 63–78 (2005)

    Article  MATH  Google Scholar 

  19. Ikhouane, F., Rodellar, J.: On the hysteretic Bouc–Wen model. Part II: robust parametric identification. Nonlinear Dyn. 42, 79–95 (2005)

    Article  MATH  Google Scholar 

  20. Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc–Wen model, a survey. J. Arch. Comput. Methods Eng. 16, 161 (2009). doi:10.1007/s11831-009-9031-8

    Article  MATH  Google Scholar 

  21. Kottari, A.K., Charalampakis, A.E., Koumousis, V.K.: A consistent degrading Bouc–Wen model. Eng. Struct. 60, 235–240 (2014)

    Article  Google Scholar 

  22. Ma, F., Zhang, H., Bockstedte, A., Foliente, G.C., Paevere, P.: Parameter analysis of the differential model of hysteresis. J. Appl. Mech. 71, 342–349 (2004)

    Article  MATH  Google Scholar 

  23. McKenna, F., Fenves, G.L., Scott, M.H.: Open System for Earthquake Engineering Simulation. University of California, Berkeley (2000)

    Google Scholar 

  24. Moysidis, A.N., Koumousis, V.K.: Hysteretic plate finite element. J. Eng. Mech. (2015). doi:10.1061/(ASCE)EM.1943-7889.0000918

    Google Scholar 

  25. Ninakawa, T., Sakino, K.: Inelastic behavior of concrete filled circular steel tubular columns subjected to uniform cyclic bending moment. In: Proceedings 11th World Conference Earthquake Engineering No. 1358, Acapulco (1996)

  26. Park, Y.J., Reinhorn, A.M., Kunnath, S.K.: IDARC: inelastic damage analysis of reinforced concrete frame-shear wall structures. National Center for Earthquake Engineering Research, State University of New York, Buffalo, Technical Reports NCEER-87-0008 (1987)

  27. Simeonov, V.K., Sivaselvan, M.V., Reinhorn, A.M.: Nonlinear analysis of structural frame system by the state-space approach. Comput. Aided Civ. Infrastruct. Eng. 15, 76–89 (2000)

    Article  Google Scholar 

  28. Sireteanu, T., Giuclea, M., Mitu, A.M.: Identification of an extended Bouc–Wen model with application to seismic protection through hysteretic devices. Comput. Mech. 45(5), 431–441 (2010)

    Article  MATH  Google Scholar 

  29. Sivaselvan, M.V., Reinhorn, A.M.: Hysteretic models for deteriorating inelastic structures. J. Eng. Mech. 126, 633–640 (2000)

    Article  Google Scholar 

  30. Takeda, T., Sozen, M.A., Nielsen, N.N.: Reinforced concrete response to simulated earthquakes. ASCE J. Struct. Div. 96, 2557–2573 (1970)

    Google Scholar 

  31. Talatahari, S., Kaveh, A., Mohajer Rahbari, N.: Parameter identification of Bouc–Wen model for MR fluid dampers using adaptive charged system search optimization. J. Mech. Sci. Technol. 26, 2523–2534 (2012). doi:10.1007/s12206-012-0625-y

    Article  Google Scholar 

  32. Triantafyllou, S., Koumousis, V.: Small and large displacement analysis of frame structures based on hysteretic beam elements. J. Eng. Mech. 138, 36–49 (2012)

    Article  Google Scholar 

  33. Triantafyllou, S.P., Koumousis, V.K.: An hysteretic quadrilateral plane stress element. Arch. Appl. Mech. 82, 1675 (2012). doi:10.1007/s00419-012-0682-9

    Article  MATH  Google Scholar 

  34. Valanis, K.C.: A theory of viscoplasticity without a yield surface. Arch. Mech. Stosow. 23, 517–534 (1971)

    MathSciNet  MATH  Google Scholar 

  35. Visintin, A.: Differential Models of Hysteresis. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  36. Wang, C., Foliente, G.C.: Hysteretic models for deteriorating inelastic structures. J. Eng. Mech. 127(11), 1200–1202 (2001)

    Article  Google Scholar 

  37. Wen, Y.K.: Method for random vibration of hysteretic systems. J. Eng. Mech. Div. 102, 249–263 (1976)

    Google Scholar 

  38. Wen, Y.K.: Equivalent linearization for hysteretic system under random excitation. J. Appl. Mech. 47, 150–154 (1980)

    Article  MATH  Google Scholar 

  39. Xie, L.L., Lu, X.Z., Guan, H., Lu, X.: Experimental study and numerical model calibration for earthquake-induced collapse of RC frames with emphasis on key columns, joints, and the overall structure. J. Earthq. Eng. 19(8), 1320–1344 (2015). doi:10.1080/13632469.2015.1040897

    Article  Google Scholar 

  40. Yu, Q.S., Gilton, C., Uang, C.M.: Cyclic response of RBS moment connections: loading sequence and lateral bracing effects. Report No. SSRP-99/13. University of California, San Diego (2000)

Download references

Acknowledgements

The authors would like to acknowledge the support from the “RESEARCH PROJECTS FOR EXCELLENCE IKY/SIEMENS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos D. Sofianos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofianos, C.D., Koumousis, V.K. Hysteretic beam element with degrading smooth models. Arch Appl Mech 88, 253–269 (2018). https://doi.org/10.1007/s00419-017-1263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1263-8

Keywords

Navigation