Skip to main content
Log in

Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We deal with a new phase nucleation in a phase-transforming bar caused by a collision of two non-stationary waves. We consider an initial stage of dynamical process in the finite bar before the moment of time when the waves emerged due to new phase nucleation reach the ends of the bar. The model of a phase-transforming bar with trilinear stress–strain relation is used. The problem is formulated as a scale-invariant initial value problem with additional restrictions in the form of several inequalities involving the problem parameters. We consider the particular limiting case where the stiffness of a new phase inclusion is much greater than the stiffness of the initial phase and obtain the asymptotic solution in the explicit form. In particular, the domains of existence of the solution in the parameter space are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abeyaratne, R., Knowles, J.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Rat. Mech. Anal. 114(2), 119–154 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abeyaratne, R., Knowles, J.: On a shock-induced martensitic phase transition. J. Appl. Phys. 87(3), 1123–1134 (2000)

    Article  Google Scholar 

  3. Abeyaratne, R., Knowles, J.: Evolution of Phase Transitions: A Continuum Theory. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  4. Balassas, K., Kalpakides, V.: The equilibrium of material forces in a 1d phase transition problem. Comput. Methods Appl. Mech. Eng. 196(17), 2161–2172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bažant, Z., Cedolin, L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. Dover, New York (2003)

    MATH  Google Scholar 

  6. Bažant, Z., Belytschko, T.: Wave propagation in a strain-softening bar: exact solution. J. Eng. Mech. 111(3), 381–389 (1985)

    Article  Google Scholar 

  7. Belytschko, T., Bažant, Z., Hyun, Y., Chang, T.: Strain-softening materials and finite-element solutions. Comput. Struct. 23(2), 163–180 (1986)

    Article  Google Scholar 

  8. Belytschko, T., Wang, X., Bažant, Z., Hyun, Y.: Transient solutions for one-dimensional problems with strain softening. J. Appl. Mech. 54(3), 513–518 (1987)

    Article  MATH  Google Scholar 

  9. Berezovski, A., Engelbrecht, J., Maugin, G.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  10. Boettinger, W., Warren, J., Beckermann, C., Karma, A.: Phase-field simulation of solidification. Mater. Res. 32(1), 163 (2002)

    Article  Google Scholar 

  11. Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32(1), 113–140 (2002)

    Article  MathSciNet  Google Scholar 

  12. Conti, S., Schweizer, B.: A sharp-interface limit for a two-well problem in geometrically linear elasticity. Arch. Rat. Mech. Anal. 179(3), 413–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Courant, R., Friedrichs, K.: Supersonic Flow and Shock Waves. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  14. Emel’lyanov, Y., Golyandin, S., Kobelev, N., Kustov, S., Nikanorov, S., Pugachev, G., Sapozhnikov, K., Sinani, A., Soifer, Y., Van Humbeeck, J., De Batist, R.: Influence of high-energy impact actions on the elastic and anelastic properties of martensitic Cu–Al–Ni crystals. J. Alloys Compd. 310(1–2), 324–329 (2000)

    Article  Google Scholar 

  15. Eremeyev, V., Pietraszkiewicz, W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Eremeyev, V., Pietraszkiewicz, W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59(7), 1395–1412 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Escobar, J., Clifton, R.: On pressure-shear plate impact for studying the kinetics of stress-induced phase transformations. Mater. Sci. Eng. A 170(1–2), 125–142 (1993)

    Article  Google Scholar 

  18. Escobar, J., Clifton, R.: Pressure-shear impact-induced phase transformations in Cu-14.44 Al-4.19 Ni single crystals. In: Symposium on Active Materials and Smart Structures: Society of Engineering Science 31st Annual Meeting, pp. 186–197. International Society for Optics and Photonics (1995)

  19. Feng, B., Levitas, V.: Plastic flows and strain-induced alpha to omega phase transformation in zirconium during compression in a diamond anvil cell: finite element simulations. Mater. Sci. Eng. A 680, 130–140 (2017)

    Article  Google Scholar 

  20. Freidin, A., Sharipova, L.: On a model of heterogenous deformation of elastic bodies by the mechanism of multiple appearance of new phase layers. Meccanica 41(3), 321–339 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gavrilov, S.: Dynamics of a free phase boundary in an infinite bar with variable cross-sectional area. Z. Angew. Math. Mech. 87(2), 117–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gavrilov, S., Shishkina, E.: On stretching of a bar capable of undergoing phase transitions. Contin. Mech. Thermodyn. 22, 299–316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gavrilov, S., Shishkina, E.: New-phase nucleation due to the collision of two nonstationary waves. Dokl. Phys. 59(12), 577–581 (2014)

    Article  Google Scholar 

  24. Gavrilov, S., Shishkina, E.: Scale-invariant initial value problems with applications to the dynamical theory of stress-induced phase transformations. In: Days on Diffraction (DD), 2015, pp. 96–101. IEEE (2015). doi:10.1109/DD.2015.7354840

  25. Gavrilov, S., Shishkina, E.: A strain-softening bar revisited. Z. Angew. Math. Mech. 95(12), 1521–1529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gurtin, M.: Configurational Forces As Basic Concepts of Continuum Physics. Springer, Berlin (2000)

    MATH  Google Scholar 

  27. Honeycutt, J., Andersen, H.: Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J. Phys. Chem. 91(19), 4950–4963 (1987)

    Article  Google Scholar 

  28. Javanbakht, M., Levitas, V.: Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear. Phys. Rev. B 94(21), 214,104 (2016)

    Article  Google Scholar 

  29. Kienzler, R., Herrmann, G.: Mechanics in Material Space: With Applications in Defect and Fracture Mechanics. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  30. Knowles, J.: Stress-induced phase transitions in elastic solids. Comput. Mech. 22(6), 429–436 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Knowles, J., Sternberg, E.: On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J. Elast. 8(4), 329–379 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lagoudas, D. (ed.): Shape Memory Alloys. Modeling and Engineering Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  33. Lin, J., Pence, T.: Pulse attenuation by kinetically active phase boundary scattering during displacive phase transformations. J. Mech. Phys. Solids 46(7), 1183–1211 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maugin, G.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)

    Book  MATH  Google Scholar 

  35. Maugin, G.: Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics. CRC Press, London (2010)

    Book  MATH  Google Scholar 

  36. Ngan, S.C., Truskinovsky, L.: Thermo-elastic aspects of dynamic nucleation. J. Mech. Phys. Solids 50(6), 1193–1229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182–7190 (1981)

    Article  Google Scholar 

  38. Pence, T.: On the emergence and propagation of a phase boundary in an elastic bar with a suddenly applied end load. J. Elast. 16(1), 3–42 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rosi, G., Giorgio, I., Eremeyev, V.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. Z. Angew. Math. Mech. 93(12), 914–927 (2013)

    Article  MathSciNet  Google Scholar 

  40. Shishkina, E., Gavrilov, S.: A strain-softening bar with rehardening revisited. Math. Mech. Solids 21(2), 137–151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17(7), 073,001 (2009)

    Article  Google Scholar 

  42. Truskinovskii, L.: Equilibrium phase interfaces. Sov. Phys. Dokl. 27(7), 551–552 (1982)

    Google Scholar 

  43. Truskinovsky, L.: Nucleation and growth in elastodynamics. In: Dynamics of Crystal Surfaces and Interfaces, pp. 185–197. Springer (2002)

  44. Truskinovsky, L., Vainchtein, A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Appl. Math. 66(2), 533–553 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yeremeyev, V., Freidin, A., Sharipova, L.: The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech. 71(1), 61–84 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge N. Gavrilov.

Appendix: The motion of the phase boundary at a near-critical speed

Appendix: The motion of the phase boundary at a near-critical speed

Assume that the phase boundary speed \(V\) is subcritical and close to its critical value:

$$\begin{aligned} V= -1+\delta ^2, \end{aligned}$$
(135)

where \(\delta >0\) is a small parameter. Let us try to find the possible value for the rate of loading

$$\begin{aligned} {v}={v}_0 +O(\delta ) \end{aligned}$$
(136)

such that the problem solution can possess this property. According to (42) and (43) one has

$$\begin{aligned} \varepsilon _{\mathrm{e}}= & {} {\varepsilon _{\mathrm{e}}}_{({-2})}\delta ^{-2} +O(\delta ^{-1}) \equiv \frac{2{v}_{0}\left( c_{\mathrm{3}}^2-1\right) +z}{c_{\mathrm{3}}^2+1}\delta ^{-2} +O(\delta ^{-1}), \end{aligned}$$
(137)
$$\begin{aligned} \varepsilon _{\mathrm{i}}= & {} {\varepsilon _{\mathrm{i}}}_{(0)} +O(\delta ) \equiv \frac{4{v}_{0}-z}{c_{\mathrm{3}}^2+1} +O(\delta ). \end{aligned}$$
(138)

Substituting expansions (137) and (138) into Eq. (45) and taking coefficients at \(\delta ^{-2}\), one gets:

$$\begin{aligned} \left( c_3^2-1\right) {\varepsilon _{\mathrm{i}}}_{(0)}{\varepsilon _{\mathrm{e}}}_{({-2})}+z{\varepsilon _{\mathrm{e}}}_{({-2})}=0. \end{aligned}$$
(139)

From the above equation it follows that

$$\begin{aligned} {\varepsilon _{\mathrm{i}}}_{(0)}=-\frac{z}{c_3^2-1}. \end{aligned}$$
(140)

Taking into account Eq. (138), one can see that

$$\begin{aligned} {v}_{0} = -\frac{z}{2\left( c_{\mathrm{3}}^2-1\right) }. \end{aligned}$$
(141)

Consider the case \(c_3 \rightarrow \infty \). Substituting Eq. (44) into (141) now yields

$$\begin{aligned} v_0\rightarrow \frac{\varepsilon _3^\mathrm{m}}{2}. \end{aligned}$$
(142)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkina, E.V., Gavrilov, S.N. Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves. Arch Appl Mech 87, 1019–1036 (2017). https://doi.org/10.1007/s00419-017-1228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1228-y

Keywords

Navigation