Skip to main content
Log in

Impact of process parameters on subsurface crack growth in brittle materials grinding

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The main failure mechanism of brittle materials occurs through the initiation and propagation of cracks. Researches involved with various loading modes and material defects have been widely investigated to control the stability of subsurface crack. However, no detailed fracture mechanics analysis has been published to understand the direct effect of process parameters on crack growth. In this paper, taking the plastic deformation below the tool and the intrinsic line defect located at the plastic zone boundary into account, a mechanical and numerical study of the fracture mechanics is proposed from the perspective of process parameters in grinding of brittle materials. The stress intensity factors are computed in detail to analyze the various impacts of process parameters and tool geometry on the subsurface crack propagation. Results indicate that the main fracture mode for median crack induced in brittle material grinding is opening rather than shear. Although the residual stress caused by plastic zone plays an important role in fracture behavior, the effect of dislocations cannot be ignored as well. In addition, the starting point of opening fracture is also affected by grinding parameters and tool geometry. A small grinding speed, a sharp large tool, a large table speed and grinding depth will lead to strong anti-shielding effect on mode I crack propagation and strong shielding effect on mode II crack propagation. The results can be used to provide guidance for the development of controlled spalling technology which enables the reuse of cracking substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Darder, M., Aranda, P., Ruiz-Hitzky, E.: Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv. Mater. 19, 1309–1319 (2007)

    Article  Google Scholar 

  2. Venkatachalam, S., Li, X.P., Liang, S.Y.: Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials. J. Mater. Process. Tech. 209, 3306–3319 (2009)

    Article  Google Scholar 

  3. Garcia, A.P., Buehler, M.J.: Bioinspired nanoporous silicon provides great toughness at great deformability. Comput. Mater. Sci. 48, 303–309 (2010)

    Article  Google Scholar 

  4. Arif, M., Zhang, X.Q., Rahman, M., Kumar, S.: A predictive model of the critical undeformed chip thickness for ductile-brittle transition in nano-machining of brittle materials. Int. J. Mach. Tool Manuf. 64, 114–122 (2013)

    Article  Google Scholar 

  5. Lawn, B.R.: Fracture of Brittle Solids. Cambridge University Press, London (1993)

    Book  Google Scholar 

  6. Chen, J.B., Fang, Q.H., Li, P.: Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding. Int. J. Mach. Tool Manuf. 91, 12–23 (2015)

    Article  Google Scholar 

  7. Cook, J., Gordon, J.E., Evans, C.C., Marsh, D.M.: A mechanism for the control of crack propagation in all-brittle systems. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 282, 508–520 (1964)

    Article  Google Scholar 

  8. Hillberry, B.M., Myers, R.J.: Method for fracturing crystalline materials. US Patent 3,901,423 [P]. U.S. Patent and Trademark Office, Washington (1975)

  9. Ewart, L., Suresh, S.: Crack propagation in ceramics under cyclic loads. J. Mater. Sci. 22, 1173–1192 (1987)

    Article  Google Scholar 

  10. Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42, 1397–1434 (1994)

    Article  MATH  Google Scholar 

  11. Gao, H.J., Huang, Y.G., Abraham, F.F.: Continuum and atomistic studies of intersonic crack propagation. J. Mech. Phys. Solids 49, 2113–2132 (2001)

    Article  MATH  Google Scholar 

  12. Aslan, O., Cordero, N.M., Gaubert, A., Forest, S.: Micromorphic approach to single crystal plasticity and damage. Int. J. Eng. Sci. 49, 1311–1325 (2011)

    Article  MathSciNet  Google Scholar 

  13. Bouchard, P.O., Bernacki, M., Parks, D.M.: Analysis of stress intensity factors and T-stress to control crack propagation for kerf-less spalling of single crystal silicon foils. Comput. Mater. Sci. 69, 243–250 (2011)

    Article  Google Scholar 

  14. Yu, T.X., Yang, J.L., Reid, S.R.: Dynamic behaviour of elastic-plastic free-free beams subjected to impulsive loading. Int. J. Solids Struct. 33, 2659–2680 (1996)

    Article  MATH  Google Scholar 

  15. Yu, T.X., Chen, F.L.: A further study of plastic shear failure of impulsively loaded clamped beams. Int. J. Impact Eng. 24, 613–629 (2000)

    Article  Google Scholar 

  16. Huang, X., Lu, G., Yu, T.X.: On the axial splitting and curling of circular metal tubes. Int. J. Mech. Sci. 44, 2369–2391 (2002)

    Article  Google Scholar 

  17. Comninou, M., Schmueser, D., Dundurs, J.: Frictional slip between a layer and substrate caused by a normal load. Int. J. Eng. Sci. 18, 131–137 (1980)

    Article  MATH  Google Scholar 

  18. Comninou, M., Barber, J.R., Dundurs, J.: Interface slip caused by a surface load moving at constant speed. Int. J. Mech. Sci. 45, 41–46 (1983)

    Article  Google Scholar 

  19. Cai, Y., Zhuang, X., Zhu, H.: A generalized and efficient method for finite cover generation in the numerical manifold method. Int. J. Comput. Methods 10, 1350028 (2013)

    Article  MathSciNet  Google Scholar 

  20. Zhuang, X., Augarde, C., Mathisen, K.: Fracture modeling using meshless methods and level sets in 3D: framework and modeling. Int. J. Numer. Methods Eng. 92, 969–998 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Petucci, J., LeBlond, C., Karimi, M.: Molecular dynamics simulations of brittle fracture in fcc crystalline materials in the presence of defects. Comput. Mater. Sci. 86, 130–139 (2014)

    Article  Google Scholar 

  22. Lawn, B.R.: Atomically sharp cracks in brittle solids: an electron microscopy study. J. Mater. Sci. 15, 1207–1223 (1980)

    Article  Google Scholar 

  23. Rice, J.R., Thomson, R.: Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 73 (1974)

    Article  Google Scholar 

  24. Inamura, T., Shimada, S., Takezawa, N., Nakahara, N.: Brittle/ductile transition phenomena observed in computer simulations of machining defect-free monocrystalline silicon. CIRP Ann. Manuf. Tech. 46, 31–34 (1997)

    Article  Google Scholar 

  25. Beltz, G.E., Lipkin, D.M., Fischer, L.L.: Role of crack blunting in ductile versus brittle response of crystalline materials. Phys. Rev. Lett. 82, 4468 (1999)

    Article  Google Scholar 

  26. Fischer, L.L., Beltz, G.E.: The effect of crack blunting on the competition between dislocation nucleation and cleavage. J. Mech. Phys. Solids 49, 635–654 (2001)

    Article  MATH  Google Scholar 

  27. Deshpande, V.S., Needleman, A., Van der Giessen, E.: Discrete dislocation modeling of fatigue crack propagation. Acta Mater. 50, 831–846 (2002)

    Article  Google Scholar 

  28. Cleveringa, H.H.M., Van der Giessen, E., Needleman, A.: A discrete dislocation analysis of mode I crack growth. J. Mech. Phys. Solids 48, 1133–1157 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Frederiksen, T., Brandbyge, M., Lorente, N., Jauho, A.P.: Inelastic scattering and local heating in atomic gold wires. Phys. Rev. Lett. 93, 256601 (2004)

  30. Sen, D., Thaulow, C., Schieffer, S.V., Cohen, A., Buehler, M.J.: Atomistic study of crack-tip cleavage to dislocation emission transition in silicon single crystals. Phys. Rev. Lett. 104, 235502 (2010)

    Article  Google Scholar 

  31. Zhou, K., Nazarov, A.A., Wu, M.S.: Continuum and atomistic studies of a disclinated crack in a bicrystalline nanowire. Phys. Rev. B 73, 045410-1–045410-11 (2006)

    Google Scholar 

  32. Zhou, K., Wu, M.S., Nazarov, A.A.: Relaxation of a disclinated tricrystalline nanowire. Acta Mater. 56, 5828–5836 (2008)

    Article  Google Scholar 

  33. Zhou, K., Wei, R.B.: Modeling cracks and inclusions near surfaces under contact loading. Int. J. Mech. Sci. 83, 163–171 (2014)

    Article  Google Scholar 

  34. Fang, Q.H., Liu, Y.W., Jiang, C.P.: Edge dislocation interacting with an interfacial crack along a circular inhomogeneity. Int. J. Solids Struct. 40, 5781–5797 (2003)

    Article  MATH  Google Scholar 

  35. Fang, Q.H., Liu, Y.W., Jiang, C.P., Li, B.: Interaction of a wedge disclination dipole with interfacial cracks. Eng. Fract. Mech. 73, 1235–1248 (2006)

    Article  Google Scholar 

  36. Fang, Q.H., Liu, Y., Liu, Y.W., Huang, B.Y.: Dislocation emission from an elliptically blunted crack tip with surface effects. Phys. B 404, 3421–3424 (2009)

    Article  Google Scholar 

  37. Broese van Groenou, A., Veldkamp, D.B.: Grinding brittle materials. Philips Tech. Rev. 38, 105–118 (1979)

    Google Scholar 

  38. Toh, S.B., McPherson, R.: Fine scale abrasive wear of ceramics by a plastic cutting process. In: Almond, E.A., Brookes, C.A., Warren, R. (eds.) Proceedings of Second International Conference on Science of Hard Materials held at Rhodes 23–28 Sept 1984. Adam Hilger, Bristol. pp. 865 (1986)

  39. Moore, M.A., King, F.S.: Abrasive wear of brittle solids. Wear 60, 123 (1980)

    Article  Google Scholar 

  40. Lawn, B., Wilshaw, R.: Indentation fracture: principles and applications. J. Mater. Sci. 10, 1049 (1975)

    Article  Google Scholar 

  41. Nakamura, M., Sumomogi, T., Endo, T.: Evaluation of surface and subsurface cracks on nano-scale machined brittle materials by scanning force microscope and scanning laser microscope. Surf. Coat. Technol. 169–170, 743–747 (2003)

    Article  Google Scholar 

  42. Yan, J.W., Zhang, Z.Y., Kuriyagawa, T.: Mechanism for material removal in diamond turning of reaction-bonded silicon carbide. Int. J. Mach. Tool Manuf. 49, 366–374 (2009)

    Article  Google Scholar 

  43. Wang, M.H., Wang, W., Lu, Z.S.: Critical cutting thickness in ultra-precision machining of single crystal silicon. Int. J. Adv. Manuf. Technol. 65, 843–851 (2013)

    Article  Google Scholar 

  44. Kharin, V.S., Zakharov, M., Bulatova, A.: Nucleation and growth of microcracks: an improved dislocational model and implications for ductile/brittle behaviour analysis. EGF9 (2013)

  45. Kachanov, M., Karpetian, E.: Three-dimensional interactions of a half-plane crack with point forces, dipoles and moments. Int. J. Solids Struct. 34, 4101–4125 (1997)

    Article  MATH  Google Scholar 

  46. Kiris, A., Kachanov, M.: Contacts and cracks of complex shapes: crack-contact dualities and relations between normal and shear compliances. Int. J. Eng. Sci. 50, 233–255 (2012)

    Article  MathSciNet  Google Scholar 

  47. Zhao, Y.X., Fang, Q.H., Liu, Y.W., Jiang, C.Z.: Shielding effects of disclinations on the elliptical blunt crack. Int. J. Eng. Sci. 70, 91–101 (2013)

    Article  MathSciNet  Google Scholar 

  48. Fang, Q.H., Zhang, L.C.: Prediction of the threshold load of dislocation emission in silicon during nanoscratching. Acta Mater. 61, 5469–5476 (2013)

    Article  Google Scholar 

  49. Fang, Q.H., Zhang, L.C.: Emission of partial dislocations in silicon under nanoindentation. J. Mater. Res. 28, 1995–2003 (2013)

    Article  MathSciNet  Google Scholar 

  50. Bernstein, N., Hess, D.W.: Lattice trapping barriers to brittle fracture. Phys. Rev. Lett. 91, 025501 (2003)

    Article  Google Scholar 

  51. Deegan, R.D., Chheda, S., Patel, L., Marder, M., Swinney, H.L., Kim, J., et al.: Wavy and rough cracks in silicon. Phys. Rev. E 67, 066209 (2003)

    Article  Google Scholar 

  52. Malkin, S., Hwang, T.W.: Grinding mechanisms for ceramics. Ann. CIRP 45, 569–580 (1996)

    Article  Google Scholar 

  53. Lawn, B.R., Evans, A.G.: A model for crack initiation in elastic/plastic indentation fields. J. Mater. Sci. 12, 2195–2199 (1977)

    Article  Google Scholar 

  54. Lambropoulos, J.C., Jacobs, S.D., Ruckman, J.: Material removal mechanisms from grinding to polishing. Ceram. Trans. 102, 113–128 (1999)

    Google Scholar 

  55. Jing, X.N., Maiti, S., Subhash, G.: A new analytical model for estimation of scratch-induced damage in brittle solids. J. Am. Ceram. Soc. 90, 885–892 (2007)

    Article  Google Scholar 

  56. Lawn, B.R., Evans, A.G., Marshall, D.B.: Elastic/plastic indentation damage in ceramics: the median/radial crack system. J. Am. Ceram. Soc. 63, 574–581 (1980)

    Article  Google Scholar 

  57. Johnson, K.L.: Contact Mechanics. Cambridge University Press, London (1985)

    Book  MATH  Google Scholar 

  58. Ahn, Y., Farris, T.N., Chandrasekar, S.: Sliding microindentation fracture of brittle materials: role of elastic stress fields. Mech. Mater. 29, 143–152 (1998)

    Article  Google Scholar 

  59. Hills, D.A., Kelly, P.A.: Solution of Crack Problems: The Distributed Dislocation Technique. Kluwer Academic Publishers, Dordecht (1996)

    Book  MATH  Google Scholar 

  60. Erdogan, F., Gupta, G.D.: On the numerical solution of singular integral equations. Q. Appl. Math. 29, 525–534 (1972)

    Article  MATH  Google Scholar 

  61. Dundurs, J., Comninou, M.: Some consequences of the inequality conditions in contact and crack problems. J. Elast. 9, 71–82 (1979)

    Article  MATH  Google Scholar 

  62. Chen, J.B., Fang, Q.H., Liu, Y.W.: Interaction between dislocation and subsurface crack under condition of slip caused by half-plane contact surface normal force. Eng. Fract. Mech. 114, 115–126 (2013)

    Article  Google Scholar 

  63. Chen, X., Rowe, W.B., McCormack, D.F.: Analysis of the transitional temperature for tensile residual stress in grinding. J. Mater. Process. Tech. 107, 216–221 (2000)

    Article  Google Scholar 

  64. Chang, J., Xu, J.Q., Mutoh, Y.: A general mixed-mode brittle fracture criterion for cracked materials. Eng. Fract. Mech. 73, 1249–1263 (2006)

    Article  Google Scholar 

  65. Yan, J., Asami, T., Harada, H., Kuriyagawa, T.: Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis. Eng. 33, 378–386 (2009)

    Article  Google Scholar 

  66. Zhu, D.H., Yan, S.J., Li, B.Z.: Single-grit modeling and simulation of crack initiation and propagation in SiC grinding using maximum undeformed chip thickness. Comput. Mater. Sci. 92, 13–21 (2014)

    Article  Google Scholar 

  67. Gu, W.B., Yao, Z.: Evaluation of surface cracking in micron and sub-micron scale scratch tests for optical glass BK7. J. Mech. Sci. Tech. 25, 1167–1174 (2011)

    Article  Google Scholar 

  68. Shaw, M.: Principles of Abrasive Processing. Oxford University Press, Oxford (1996)

    Google Scholar 

  69. Li, X.Z., Nakano, M., Yamauchi, Y., Kishida, K., Tanaka, K.A.: Microcracks, spall and fracture in glass: a study using short pulsed laser shock waves. J. Appl. Phys. 83, 3583 (1998)

    Article  Google Scholar 

  70. Kozhushko, V.V., Hess, P.: Comparison of mode-resolved fracture strength of silicon with mixed-mode failure of diamond crystals. Eng. Fract. Mech. 77, 193–200 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to deeply appreciate the support from the NNSFC (51601100, 11672141, 11572118 and 11402128), the Hunan Provincial Science Fund for Distinguished Young Scholars (2015JJ1006), the Fok Ying-Tong Education Foundation, China (141005), and K. C. Wong Magna Fund administered by Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianbin Chen or Qihong Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Fang, Q., Du, J. et al. Impact of process parameters on subsurface crack growth in brittle materials grinding. Arch Appl Mech 87, 201–217 (2017). https://doi.org/10.1007/s00419-016-1187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1187-8

Keywords

Navigation