Skip to main content
Log in

Electrically and magnetically induced Maxwell stresses in a magneto-electro-elastic medium with periodic limited permeable cracks

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, the Maxwell stresses arising due to an electric and a magnetic field both at the crack faces and infinity are taken into account to determine and analyse some main fracture parameters for a periodic system of cracks in a magneto-electro-elastic material. A plane strain problem is formulated and analysed. At the crack faces, the limited permeable electromagnetic boundary conditions are assumed. The material is subjected to a relatively weak mechanical and a strong electric and magnetic loading applied at infinity. The solution of the problem is obtained in a closed form using a complex function theory. Formulas for stresses, magnetic induction and electric displacement vector, elastic displacements, magnetic and electric potential jumps at the interface as well as the intensity factors at the crack tips are presented as relatively simple analytical expressions. The system of two cubic equations is obtained for the electric displacement and magnetic induction in the crack regions. A case of a single limited permeable crack in a magneto-electro-elastic medium is studied as well, and the results related to this case and to the periodic crack set are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aboudi, J., Zheng, X., Jin, K.: Micromechanics of magnetostrictive composites. Int. J. Eng. Sci. 81, 82–99 (2014). doi:10.1016/j.ijengsci.2014.04.007

    Article  MathSciNet  Google Scholar 

  2. Bhargava, R.R., Jangid, K.: Closed form solution for two unequal collinear semi-permeable straight cracks in a piezoelectric media. Arch. Appl. Mech. 84, 833–849 (2014). doi:10.1007/s00419-014-0836-z

    Article  MATH  Google Scholar 

  3. Deeg, W.: The analysis of dislocation, crack and inclusion problems in piezoelectric solids. Ph.D. Thesis, Stanford University (1980)

  4. Gakhov, F.: Boundary Value Problems. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  5. Gao, C.-F., Kessler, H., Balke, H.: Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks. Int. J. Eng. Sci. 41, 969–981 (2003). doi:10.1016/S0020-7225(02)00324-5

    Article  MATH  Google Scholar 

  6. Gruebner, O., Kamlah, M., Munz, D.: Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium. Eng. Fract. Mech. 70, 1399–1413 (2003). doi:10.1016/S0013-7944(02)00117-0

    Article  Google Scholar 

  7. Hao, T.H., Shen, Z.Y.: A new electric boundary condition of electric fracture mechanics and its applications. Eng. Fract. Mech. 47, 793–802 (1994). doi:10.1016/0013-7944(94)90059-0

    Article  Google Scholar 

  8. Hao, T.-H.: Multiple collinear cracks in a piezoelectric material. Int. J. Solids Struct. 38, 9201–9208 (2001). doi:10.1016/S0020-7683(01)00069-5

    Article  MATH  Google Scholar 

  9. Hasebe, N.: Magneto-elastic stress induced by an electric current in an infinite thin plate with an elliptical hole. Arch. Appl. Mech. 80, 1353–1370 (2010). doi:10.1007/s00419-009-0377-z

    Article  MATH  Google Scholar 

  10. Herrmann, K., Loboda, V.: Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models. Arch. Appl. Mech. 70(1–3), 127–143 (2000). doi:10.1007/s004199900052

    Article  MATH  Google Scholar 

  11. Kozinov, S., Loboda, V., Lapusta, Y.: Periodic set of limited electrically permeable interface cracks with contact zones. Mech. Res. Commun. 48, 32–41 (2013). doi:10.1016/j.mechrescom.2012.12.002

    Article  Google Scholar 

  12. Landis, C.M.: Energetically consistent boundary conditions for electromechanical fracture. Int. J. Solids Struct. 41, 6291–6315 (2004). doi:10.1016/j.ijsolstr.2004.05.062

    Article  MATH  Google Scholar 

  13. Lapusta, Y., Komarov, A., Labesse-Jied, F., Moutou-Pitti, R., Loboda, V.: Limited permeable crack moving along the interface of a piezoelectric bi-material. Eur. J. Mech. A/Solids 30, 639–649 (2011). doi:10.1016/j.euromechsol.2011.04.005

    Article  MATH  Google Scholar 

  14. Li, Q., Chen, Y.H.: Why traction-free? Piezoelectric crack and coulombic traction. Arch. Appl. Mech. 78, 559–573 (2008). doi:10.1007/s00419-007-0180-7

    Article  MATH  Google Scholar 

  15. Li, Q., Chen, Y.H.: The Coulombic traction on the surfaces of an interface crack in dielectric/piezoelectric or metal/piezoelectric bimaterials. Acta Mech. 202, 111–126 (2009). doi:10.1007/s00707-008-0006-x

    Article  MATH  Google Scholar 

  16. Li, Q., Ricoeur, A., Kuna, M.: Coulomb traction on a penny-shaped crack in a three dimensional piezoelectric body. Arch Appl. Mech. 2011(81), 685–700 (2011). doi:10.1007/s00419-010-0443-6

    Article  MATH  Google Scholar 

  17. McMeeking, R.: Crack tip energy release rate for a piezoelectric compact tension specimen. Eng. Fract. Mech. 64, 217–244 (1999)

    Article  Google Scholar 

  18. Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity. Gordon and Breach Science Publishers, New York (1988)

    Google Scholar 

  19. Pak, Y.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54(1), 79–100 (1992). doi:10.1007/BF00040857

    Article  Google Scholar 

  20. Ricoeur, A., Kuna, M.: Electrostatic tractions at dielectric interfaces and their implication for crack boundary conditions. Mech. Res. Commun. 36, 330–335 (2009). doi:10.1016/j.mechrescom.2008.09.009

    Article  MATH  Google Scholar 

  21. Sheta, E., Moses, R., Huttsell, L.: Active smart material control system for buffet alleviation. J. Sound Vib. 292, 854–868 (2006). doi:10.1016/j.jsv.2005.09.002

    Article  Google Scholar 

  22. Sih, G.C., Song, Z.F.: Magnetic and electric poling effects associated with crack growth in BaTiO\(_3\)–CoFe\(_2\)O\(_4\) composite. Theoret. Appl. Fract. Mech. 39, 209–227 (2003). doi:10.1016/S0167-8442(03)00003-X

    Article  Google Scholar 

  23. Stratton, J.A.: Electromagnetic Theory. McGraw-Hill Book Company, New York and London (1941)

    MATH  Google Scholar 

  24. Suo, Z., Kuo, C., Barnett, D., Willis, J.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992). doi:10.1016/0022-5096(92)90002-J

    Article  MathSciNet  MATH  Google Scholar 

  25. Viun, O., Labesse-Jied, F., Moutou-Pitti, R., Loboda, V., Lapusta, Y.: Periodic limited permeable cracks in magneto-electro-elastic media. Acta Mech. 226(7), 2225–2233 (2015). doi:10.1007/s00707-014-1296-9

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, B.-L., Mai, Y.-W.: On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. Int. J. Eng. Sci. 41, 633–652 (2003). doi:10.1016/S0020-7225(02)00149-0

    Article  Google Scholar 

  27. Wang, B.-L., Mai, Y.-W.: Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int. J. Solids Struct. 44, 387–398 (2007). doi:10.1016/j.ijsolstr.2006.04.028

    Article  MATH  Google Scholar 

  28. Xu, X.-L., Rajapakse, R.K.N.D.: On a plane crack in piezoelectric solids. Int. J. Solids Struct. 38, 7643–7658 (2001). doi:10.1016/S0020-7683(01)00029-4

    Article  MATH  Google Scholar 

  29. Zhang, A.B., Wang, B.L.: The influence of Maxwell stresses on the fracture mechanics of piezoelectric materials. Mech. Mater. 68, 64–69 (2014). doi:10.1016/j.mechmat.2013.07.023

    Article  Google Scholar 

  30. Zhao, M.-H., Fan, C.-Y.: Strip electric-magnetic breakdown model in a magnetoelectroelastic medium. J. Mech. Phys. Solids 56, 3441–3458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, Z.-G., Wang, B., Sun, Y.-G.: Two collinear interface cracks in magneto-electro-elastic composites. Int. J. Eng. Sci. 42, 1155–1167 (2004)

    Article  MATH  Google Scholar 

  32. Zhong, X.-C.: Closed-form solutions for two collinear dielectric cracks in a magnetoelectroelastic solid. Appl. Math. Model. 35, 2930–2944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been partially carried out within the framework of the Transversal Program of the Pascal Institute, Division “Materials and Multiscale Modeling” and of the Excellence Laboratory LabEx IMobS3 (ANR-10-LABX-16-01) (supported by the French program investissement d’avenir and managed by the National Research Agency (ANR), the European Commission (Auvergne FEDER funds) and the Region Auvergne), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Viun.

Appendix

Appendix

Table 2 Effective properties of \(\hbox {BaTiO}_{3}\)\(\hbox {CoFe}_{2}\hbox {O}_{4}\) material for different \(V_\mathrm{f}\) (Sih and Song [22])

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viun, O., Loboda, V. & Lapusta, Y. Electrically and magnetically induced Maxwell stresses in a magneto-electro-elastic medium with periodic limited permeable cracks. Arch Appl Mech 86, 2009–2020 (2016). https://doi.org/10.1007/s00419-016-1166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1166-0

Keywords

Navigation