Skip to main content
Log in

A close-form solution applied to the free vibration of the Euler–Bernoulli beam with edge cracks

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates the free vibration of a homogeneous Euler–Bernoulli beam with multiple transverse cracks under non-symmetric boundary conditions. The differential equation is formulated by introducing Dirac’s delta function into the uniform flexural stiffness, and the close-form solution of mode shapes is then derived by applying the Laplace transform technique. The proposed method is validated against existing experimental method for damaged cantilever beams. With the validated method, a parametric study is performed to study the effect of crack numbers, damage parameters and crack locations on the natural frequencies and mode shapes for three non-symmetric boundary conditions (pinned–clamped, clamped–free shear and pinned–free shear).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gudmundson, P.: Eigenfrequency changes of structures due to cracks, notches or other geometrical changes. J. Mech. Phys. Solids 30, 339–353 (1982)

    Article  Google Scholar 

  2. Liang, R.Y., Hu, J., Choy, F.: Theoretical study of crack-induced eigenfrequency changes on beam structures. ASME J. Eng. Mech. 118, 384–396 (1992)

    Article  Google Scholar 

  3. Morassi, A.: Crack-induced changes in eigenparameters of beam structures. ASME J. Eng. Mech. 119, 1798–1803 (1993)

    Article  Google Scholar 

  4. Doebling, S.W., Farrar, C.R., Prime, M.B.: A summary review of vibration-based damage identification methods. Shock Vib. 30, 91–105 (1998)

    Article  Google Scholar 

  5. Xu, G., Zhu, W., Emory, B.: Experimental and numerical investigation of structural damage detection using changes in natural frequencies. ASME J. Vib. Acoust. 129, 686–700 (2007)

    Article  Google Scholar 

  6. Yan, Y., Cheng, L., Wu, Z., Yam, L.: Development in vibration-based structural damage detection technique. Mech. Syst. Signal Process. 2(1), 2198–2211 (2007)

    Article  Google Scholar 

  7. Fernandez-Saez, J., Rubio, L., Navarro, C.: Approximate calculation of the fundamental frequency for bending vibrations of cracked beams. J. Sound Vib. 225, 345–352 (1999)

    Article  Google Scholar 

  8. Zhong, S., Oyadiji, S.O.: Analytical predictions of natural frequencies of cracked simply supported beams with a stationary roving mass. J. Sound Vib. 311, 328–352 (2008)

    Article  Google Scholar 

  9. Shen, M.H., Pierre, C.: Natural modes of Bernoulli–Euler beams with symmetric cracks. J. Sound Vib. 138, 115–134 (1990)

    Article  Google Scholar 

  10. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Solid Mechanics. Butterworth and Heinemann, Oxford (2000)

    MATH  Google Scholar 

  11. Chondros, T., Dimarogonas, A., Yao, J.: A continuous cracked beam vibration theory. J. Sound Vib. 215, 17–34 (1998)

    Article  MATH  Google Scholar 

  12. Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55, 831–857 (1996)

    Article  Google Scholar 

  13. Ostachowicz, W., Krawczuk, M.: Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J. Sound Vib. 150, 191–201 (1991)

    Article  Google Scholar 

  14. Bilello, C.: Theoretical and experimental investigation on damaged beams under moving systems. Ph. D. Thesis, Universitadegli Studi di Palermo, Italy (2001)

  15. Labib, A., Kennedy, D., Featherston, C.: Free vibration analysis of beams and frames with multiple cracks for damage detection. J. Sound Vib. 333, 4991–5003 (2014)

    Article  Google Scholar 

  16. Rizos, P., Aspragathos, N., Dimarogonas, A.: Identification of crack location and magnitude in a cantilever beam from the vibration modes. J. Sound Vib. 138, 381–388 (1990)

    Article  Google Scholar 

  17. Shifrin, E., Ruotolo, R.: Natural frequencies of a beam with an arbitrary number of cracks. J. Sound Vib. 222, 409–423 (1999)

    Article  Google Scholar 

  18. Khiem, N., Lien, T.: A simplified method for natural frequency analysis of a multiple cracked beam. J. Sound Vib. 245, 737–751 (2001)

    Article  Google Scholar 

  19. Attar, M.: A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions. Int. J. Mech. Sci. 57, 19–33 (2012)

    Article  Google Scholar 

  20. Ruotolo, R., Surace, C.: Natural frequencies of a bar with multiple cracks. J. Sound Vib. 272, 301–316 (2004)

    Article  Google Scholar 

  21. Li, Q.: Free vibration analysis of non-uniform beams with an arbitrary number of cracks and concentrated masses. J. Sound Vib. 252, 509–525 (2002)

    Article  Google Scholar 

  22. Yavari, A., Sarkani, S., Moyer, E.T.: On applications of generalized functions to beam bending problems. Int. J. Solids Struct. 37, 5675–5705 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yavari, A., Sarkani, S.: On applications of generalized functions to the analysis of Euler-Bernoulli beam-columns with jump discontinuities. Int. J. Mech. Sci. 43, 1543–1562 (2001)

    Article  MATH  Google Scholar 

  24. Yavari, A., Sarkani, S., Reddy, J.: On nonuniform Euler-Bernoulli and Timoshenko beams with jump discontinuities: application of distribution theory. Int. J. Solids Struct. 38, 8389–8406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, J., Qiao, P.: Vibration of beams with arbitrary discontinuities and boundary conditions. J. Sound Vib. 308, 12–27 (2007)

    Article  Google Scholar 

  26. Biondi, B., Caddemi, S.: Closed form solutions of Euler-Bernoulli beams with singularities. Int. J. Solids Struct. 42, 3027–3044 (2005)

    Article  MATH  Google Scholar 

  27. Biondi, B., Caddemi, S.: Euler-Bernoulli beams with multiple singularities in the flexural stiffness. Eur. J. Mech. A Solid 26, 789–809 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Caddemi, S., Caliò, I.: Exact solution of the multi-cracked Euler–Bernoulli column. Int. J. Solids Struct. 45, 1332–1351 (2008)

    Article  MATH  Google Scholar 

  29. Caddemi, S., Caliò, I.: Exact closed-form solution for the vibration modes of the Euler–Bernoulli beam with multiple open cracks. J. Sound Vib. 327, 473–489 (2009)

    Article  Google Scholar 

  30. Caddemi, S., Caliò, I.: The influence of the axial force on the vibration of the Euler–Bernoulli beam with an arbitrary number of cracks. Arch. Appl. Mech. 82, 827–839 (2012)

    Article  MATH  Google Scholar 

  31. Caddemi, S., Morassi, A.: Multi-cracked Euler–Bernoulli beams: mathematical modeling and exact solutions. Int. J. Solids Struct. 50, 944–956 (2013)

    Article  Google Scholar 

  32. Caddemi, S., Caliò, I., Cannizzaro, F.: Closed-form solutions for stepped Timoshenko beams with internal singularities and along-axis external supports. Arch. Appl. Mech. 83, 559–577 (2013)

    Article  MATH  Google Scholar 

  33. Caddemi, S., Caliò, I.: The exact explicit dynamic stiffness matrix of multi-cracked Euler–Bernoulli beam and applications to damaged frame structures. J. Sound Vib. 332, 3049–3063 (2013)

    Article  Google Scholar 

  34. Caddemi, S., Caliò, I.: The exact stability stiffness matrix for the analysis of multi-cracked frame structures. Comput. Struct. 125, 137–144 (2013)

    Article  Google Scholar 

  35. Caddemi, S., Caliò, I., Cannizzaro, F.: The influence of multiple cracks on tensile and compressive buckling of shear deformable beams. Int. J. Solids Struct. 50, 3166–3183 (2013)

    Article  Google Scholar 

  36. Caddemi, S., Caliò, I., Cannizzaro, F., Rapicavoli, D.: A novel beam finite element with singularities for the dynamic analysis of discontinuous frames. Arch. Appl. Mech. 83, 1451–1468 (2013)

    Article  MATH  Google Scholar 

  37. Caddemi, S., Calio, I., Cannizzaro, F.: Tensile and compressive buckling of columns with shear deformation singularities. Meccanica 50, 707–720 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Caddemi, S., Caliò, I., Cannizzaro, F.: Influence of an elastic end support on the dynamic stability of Beck’ s column with multiple weak sections. Int. J. Nonlinear Mech. 69, 14–28 (2015)

    Article  Google Scholar 

  39. Bagarello, F.: Multiplication of distributions in one dimension: possible approaches and applications to \(\delta \)-function and its derivatives. J. Math. Anal. Appl. 196, 885–901 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bagarello, F.: Multiplication of distributions in one dimension and a first application to quantum field theory. J. Math. Anal. Appl. 266, 298–320 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research is supported by the National Nature Science Foundation of China (Grant No. 11132003) and the Postgraduate Research and Innovation Projects in Jiangsu (No. KYLX_0422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwen Ren.

Appendices

Appendix 1: Schwarz’s distribution theory

Theorem 1

Assume that a function f(x) is n times continuously differentiable. Then, we have:

$$\begin{aligned} f(x)\delta ^{(n)}(x-x_0 )= & {} (-1)^{n}f^{(n)}(x_0 )\delta (x-x_0 )+(-1)^{n-1}nf^{(n-1)}(x_0 )\delta ^{(1)}(x-x_0 )\nonumber \\&+\,(-1)^{n-2}\frac{n(n-1)}{2!}f^{(n-2)}(x_0 )\delta ^{(2)}(x-x_0 )+\cdots +f(x_0 )\delta ^{(n)}(x-x_0 ) \end{aligned}$$
(26)

Corollary 1

$$\begin{aligned} \left[ {f(x)H(x-x_0 )} \right] ^{(n)}= & {} f^{(n)}(x)H(x-x_0 )+f^{(n-1)}(x_0 )\delta (x-x_0 )+f^{(n-2)}(x_0 )\delta ^{(1)}(x-x_0 )+\cdots \nonumber \\&+\,f(x_0 )\delta ^{(n-1)}(x-x_0 ) \end{aligned}$$
(27)

Definition 1

The Laplace transform of the Heaviside function, the delta function and their distributional derivatives can be defined as:

$$\begin{aligned}&L\left\{ {H(x-x_0 )} \right\} =\frac{1}{s}\hbox {e}^{-sx_0 } \end{aligned}$$
(28)
$$\begin{aligned}&L\left\{ {\delta (x-x_0 )} \right\} =\hbox {e}^{-sx_0 } \end{aligned}$$
(29)
$$\begin{aligned}&L\left\{ {\delta ^{(k)}(x-x_0 )} \right\} =s^{k}\hbox {e}^{-sx_0 } \end{aligned}$$
(30)

Theorem 2

Let \(f^{(k)}(x)\) be continuous with respect to all x, then

$$\begin{aligned} L\left\{ {f^{(k)}(x)} \right\} =s^{k}F(s)-f(0)s^{k-1}-f^{(1)}(0)s^{k-2}-\cdot \cdot \cdot -f^{(k-1)}(0) \end{aligned}$$
(31)

Appendix 2: Relationship between the damage parameter and the equivalent rotational stiffness

The relation between damage parameter \(\lambda _i \) and the equivalent rotational stiffness \(K_{\mathrm{eq},i} \) is given by

$$\begin{aligned} K_{\mathrm{eq},i} =\frac{E_0 I_0 }{\lambda _i } \end{aligned}$$
(32)

In the case of a beam of a rectangular cross section of width b and height h, the equivalent rotational stiffness \(K_{\mathrm{eq},i}\) can be obtained by using the strain energy density function [29]:

$$\begin{aligned} K_{\mathrm{eq},i} =\frac{E_0 I_0 }{h}\frac{1}{C(\beta )} \end{aligned}$$
(33)

where \(\beta =\frac{d}{h}\) is the ratio of the crack depth d and the cross section height h, and \(C(\beta )\) is the dimensionless local compliance which for a single-sided open crack can be expressed in the following form:

$$\begin{aligned} C(\beta )=a_0 \sum _{n=1}^{10} {a_n \beta ^{n}} \end{aligned}$$
(34)

As the strain energy density function should be confirmed through the experiment, five polynomial formulas are proposed due to different measure results of the strain energy density concentration in the vicinity of the crack tip. Variation of formulas are reflected in the diversity of the coefficients \(a_0 \) and \(a_n \), which can be seen in Table 3.

Table 3 Variation of the coefficients \(a_0 \) and \(a_n \) in five polynomial formulas

Appendix 3: Mechanism of modal curvature \({\phi }''(x)\) in characterizing damage

According to the close-form solution presented in Eq. (10), modal curvature \({\phi }''(x)\)can be obtained as follows:

$$\begin{aligned} {\phi }''(x)= & {} \frac{S_1 (\alpha x)}{\alpha }{\phi }'''(0)+S_0 (\alpha x){\phi }''(0)+\alpha S_3 (\alpha x){\phi }'(0)+\alpha ^{2}S_2 (\alpha x)\phi (0) \nonumber \\&+\,\alpha \sum _{i=1}^n {\gamma _i {\phi }''(x_{0i} )} S_3 (\alpha (x-x_{0i} ))H(x-x_{0i} )+\sum _{i=1}^n {\gamma _i {\phi }''(x_{0i} )} \delta (x-x_{0i} ) \end{aligned}$$
(35)

Similar to the proof of \(M(x_{0j} )\), the modal curvature \({\phi }''(x_{0j} )\) at the cracked cross sections \(x_{oj} \) can be derived by utilizing the integral property of Dirac’s delta:

$$\begin{aligned} {\phi }''(x_{0j} )=\int _{-\infty }^{+\infty } {{\phi }''(x)\delta (x-x_{0j} )} \hbox {d}x \end{aligned}$$
(36)

Then substituting Eq. (35) into Eq. (36), we can obtain the expression of modal curvature as follows:

$$\begin{aligned} {\phi }''(x_{0j} )=\frac{1}{1-A\gamma _j }\left[ {\begin{array}{l} \frac{S_1 (\alpha x_{0j} )}{\alpha }{\phi }'''(0)+S_0 (\alpha x_{0j} ){\phi }''(0)+\alpha S_3 (\alpha x_{0j} ){\phi }'(0) \\ +\,\alpha ^{2}S_2 (\alpha x_{0j} )\phi (0)+\alpha \sum _{i=1}^n {\gamma _i {\phi }''(x_{0i} )} S_3 (\alpha (x_{0j} -x_{0i} ))H(x_{0j} -x_{0i} ) \\ \end{array}} \right] \end{aligned}$$
(37)

Due to the non-negativity of \(A\gamma _j \) and \(1-A\gamma _j \), the value of \(\frac{1}{1-A\gamma _j }\) ranges from 1 to \(\infty \), which can give rise to an abrupt change when the spatial variable x is incredibly close to the crack position (\(x_{0j} )\), thus can significantly magnify damage information. And the magnification factor is higher when the damage is more severe. Thus, the modal curvature brings the damage undetected in the mode shape into prominence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Ren, Q., Xia, N. et al. A close-form solution applied to the free vibration of the Euler–Bernoulli beam with edge cracks. Arch Appl Mech 86, 1633–1646 (2016). https://doi.org/10.1007/s00419-016-1140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1140-x

Keywords

Navigation