Skip to main content
Log in

Longitudinal impact of piezoelectric media

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We consider the elastodynamic impact problem involving a one-dimensional finite-thickness piezoelectric flyer traveling at initial velocity \(V_0\) that collides with (and adheres to) a stationary piezoelectric target of finite thickness backed by a semi-infinite non-piezoelectric elastic half-space. We derive expressions for the stress, velocity, and electric displacement in the target at all times after impact. A combined d’Alembert and Laplace transform method is used to derive new numerically based solutions for this class of transient wave propagation problems. A modified Dubner–Abate–Crump (DAC) algorithm is used to invert the analytical Laplace transform domain solutions to the time domain. Unlike many authors who neglect electromechanical coupling in the initially unstressed region ahead of the shock, we consider this effect, which gives rise to the development of a tensile stress wave within the piezoelectric target ahead of the shock. To solve the problem, we derive a new piezoelectric impact boundary condition and apply it to the problem of a finite quartz (Si\(\text {O}_2\)) flyer impacting a lead zirconate titanate (PZT-4) target and find that the solutions obtained using the modified DAC algorithm compare well with those obtained using both a finite-difference time-domain method, and the commercial finite element code, COMSOL multiphysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Electrodynamic jump conditions for moving boundaries are derived in [27], cf. p. 1187, Table 1.

  2. The contact time is infinite since it is assumed that the flyer and target adhere on impact; this assumption is in fact unnecessary in those cases where flyer–target separation does not occur.

  3. Similar behavior is observed in thickness-mode piezoelectric transducers excited by pulse voltage sources for ultrasonic applications [29].

References

  1. Chen, P.J., Davison, L., McCarthy, M.F.: Electrical responses of nonlinear piezoelectric materials to plane waves of uniaxial strain. J. Appl. Phys. 47(11), 4759–4764 (1976)

  2. Graham, R.A.: Second and third order piezoelectric stress constants of lithium niobate as determined by the impact loading technique. J. Appl. Phys. 48(6), 2153–2163 (1977)

    Article  Google Scholar 

  3. Wang, X., Dai, H.L.: Dynamic focusing-effect of piezoelectric fibers subjected to radial impact. Compos. Struct. 78(4), 567–574 (2007)

    Article  Google Scholar 

  4. Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  5. Redwood, M.: Transient performance of a piezoelectric transducer. J. Acoust. Soc. Am. 33(4), 527–536 (1961)

    Article  Google Scholar 

  6. Steutzer, O.M.: Multiple reflections in a free piezoelectric plate. J. Acoust. Soc. Am. 42(2), 502–508 (1967)

    Article  Google Scholar 

  7. Clayton, J.D.: Modeling nonlinear electromechanical behavior of shocked silicon carbide. J. Appl. Phys. 107 (2010)

  8. Graham, R.A.: Strain dependence of longitudinal piezoelectric, elastic, and dielectric constants of x-cut quartz. J. Appl. Phys. 6(12), 4779–4792 (1972)

    Google Scholar 

  9. Lysne, P.C.: One dimensional theory of polarization by shock waves: Application to quartz gauges. J. Appl. Phys. 43(2), 425–431 (1972)

    Article  Google Scholar 

  10. Gazonas, G.A., Scheidler, M.J., Velo, A.P.: Exact analytical solutions for elastodynamic impact (2015) (in review)

  11. Gazonas, G.A., Wildman, R.A., Hopkins, D.A.: Elastodynamic impact into piezoelectric media. U.S. Army Research Laboratory, ARL-TR-7056, September (2014)

  12. Le, K.C.: On the impact of piezoceramic rods. Mech. Solids 3, 312–316 (1987)

    Google Scholar 

  13. Le, K.C.: Vibrations of Shells and Rods. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  14. Dubner, H., Abate, J.: Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J. ACM 15(1), 115–123 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput. J. 17(4), 371–376 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crump, K.: Numerical inversion of Laplace transforms using a Fourier series approximation. J. ACM 23(1), 89–96 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Laverty, R., Gazonas, G.A.: An improvement to the Fourier series method for inversion of Laplace transforms applied to elastic and viscoelastic waves. Int. J. Comput. Methods 3(1), 57–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Su, Y., Ma, C.: Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods. Int. J. Solids Struct. 49, 1158–1176 (2012)

    Article  Google Scholar 

  19. Ing, Y., Liao, H., Huang, K.: The extended Durbin method and its application for piezoelectric wave propagation problems. Int. J. Solids Struct. 50, 4000–4009 (2013)

    Article  Google Scholar 

  20. Sirwah, M.A.: Sloshing waves in a heated viscoelastic fluid layer in an excited rectangular tank. Phys. Lett. A 378, 3289–3300 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Randow, C.L., Gazonas, G.A.: Transient stress wave propagation in one-dimensional micropolar bodies. Int. J. Solids Struct. 46(5), 1218–1228 (2009)

    Article  MATH  Google Scholar 

  22. COMSOL Multiphysics Reference Manual, version 4.4.  Burlington, MA: COMSOL, Inc. (2013)

  23. Mathematica Edition: version 9.0.  Champaign, IL: Wolfram Research (2013)

  24. Cady, W.G.: Piezoelectricity, vol. 1. Dover Publications, New York (1964)

    Google Scholar 

  25. Standards on piezoelectric crystals. In: Proceedings of the I.R.E.; New York: The Institute of Radio Engineers, pp. 1378–1395 (1949)

  26. Lorrain, P., Corson, D.R.: Electromagnetic Fields and Waves, vol. 2. W.H. Freeman & Co., New York (1970)

    MATH  Google Scholar 

  27. Costen, R.C., Adamson, D.: Three-dimensional derivation of the electrodynamic jump conditions and momentum-energy laws at a moving boundary. Proc. IEEE 53(9), 1181–1196 (1965)

    Article  Google Scholar 

  28. Sternberg, W.J., Smith, T.L.: The Theory of Potential and Spherical Harmonics. University of Toronto Press, Toronto (1964)

    MATH  Google Scholar 

  29. Zhang, H.L., Li, M.X., Ying, C.F.: Complete solutions of the transient behavior of a transmitting thickness-mode piezoelectric transducer and their physical interpretations. J. Acoust. Soc. Am. 74(4), 1105–1114 (1983)

    Article  MATH  Google Scholar 

  30. Davison, L., Graham, R.: Shock compression of solids. Phys. Rep. Rev. Sect. Phys. Lett. 55(4), 255–379 (1979)

    Google Scholar 

  31. Hopkins, D.A., Gazonas, G.A.: Wave propagation in second-order nonlinear piezoelectric media. U.S. Army Research Laboratory, ARL-TR-5766, September (2011)

Download references

Acknowledgments

The authors wish to thank reviewer 1 for identifying the closed-form solutions found in the Le [12, 13] references that were used to verify the ILT numerical solutions appearing in “Appendix 3.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Gazonas.

Appendices

Appendix 1: Laplace transform domain functions \(\overline{F}_1(s), \overline{G}_1(s),\; \text {and}\; \overline{D}_1(s)\)

Appendix 1 lists the Laplace transform domain functions \(\overline{F}_1(s), \overline{G}_1(s),\; \text {and}\; \overline{D}_1(s)\) that are substituted into (60) for the Laplace transform domain stress \(\overline{\sigma }_1(x,s)\) in the target that is inverted to the time-domain using the Mathematica algorithm in “Appendix 2.”

$$\begin{aligned} \overline{F}_1(s)=\frac{\overline{n}_{F_1}(s)}{\overline{d}_{F_1}(s)}, \end{aligned}$$
(72)

where

$$\begin{aligned} \overline{n}_{F_1}(s)= & {} V_0 z_0 e^{-\frac{k s}{c_0}} \left( e^{\frac{k s}{c_0}}-1\right) \left( e^{\frac{k s}{c_0}+\frac{l s}{c_1}} (\varepsilon _1 (\varepsilon _0 (-2 h_0^2 (z_1+z_2)+h_1 h_0 (z_1+z_2)-h_1^2 z_0\right) \nonumber \\&+\, k s z_0(z_1+z_2)) + l s z_0 (z_1+z_2) \varepsilon _0)+e^{\frac{l s}{c_1}} (\varepsilon _1 (k s z_0 (z_1+z_2)-\varepsilon _0 (-2 h_0^2 (z_1+z_2)\nonumber \\&+\,h_1 h_0 (z_1+z_2)+h_1^2 z_0)) + l s z_0 (z_1+z_2) \varepsilon _0)+h_1 \varepsilon _0 \varepsilon _1 (h_1 z_0-h_0 z_1) e^{\frac{k s}{c_0}}\nonumber \\&+\,h_1 \varepsilon _0 \varepsilon _1 (h_1 z_0+h_0 z_1)) , \end{aligned}$$
(73)
$$\begin{aligned} \overline{d}_{F_1}(s)= & {} 4 s (\sinh \left( \frac{k s}{c_0} \right) \left( \sinh \left( \frac{l s}{c_1}\right) (\varepsilon _1 (k s z_0^2 z_2-\varepsilon _0 (h_1^2 z_0^2+h_0^2 z_1^2)\right) +l s z_2 z_0^2 \varepsilon _0) \nonumber \\&+\, z_1 \cosh \left( \frac{l s}{c_1}\right) (h_0^2 (-z_2) \varepsilon _0 \varepsilon _1+k s z_0^2 \varepsilon _1+l s z_0^2 \varepsilon _0))\nonumber \\&+\, z_0 \cosh \left( \frac{k s}{c_0}\right) \left( \sinh \left( \frac{l s}{c_1}\right) (\varepsilon _1 (k s z_1^2-(2 h_0^2-2 h_1 h_0+h_1^2) z_2 \varepsilon _0)+l s z_1^2 \varepsilon _0\right) \nonumber \\&+\, z_1 \cosh \left( \frac{l s}{c_1}\right) (\varepsilon _1 (k s z_2-2 (h_0^2-h_1 h_0+h_1^2) \varepsilon _0)+l s z_2 \varepsilon _0)+2 h_1 (h_1-h_0) z_1 \varepsilon _0 \varepsilon _1)\nonumber \\&\left. +\; 2 h_0 z_0 \varepsilon _0 \varepsilon _1 \left( (h_0-h_1) \left( z_2 \sinh \left( \frac{l s}{c_1}\right) +z_1 \cosh \left( \frac{l s}{c_1}\right) \right) +h_1 z_1\right) \right) . \end{aligned}$$
(74)
$$\begin{aligned}&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \overline{G}_1(s)=\frac{\overline{n}_{G_1}(s)}{\overline{d}_{G_1}(s)}, \end{aligned}$$
(75)

where

$$\begin{aligned} \overline{n}_{G_1}(s)= & {} V_0 z_0 \left( e^{\frac{k s}{c_0}}-1\right) e^{-\frac{k s}{c_0}-\frac{l s}{c_1}} (\varepsilon _1 (k s z_0 (z_1-z_2) \left( e^{\frac{k s}{c_0}}+1\right) \nonumber \\&-\;\varepsilon _0 (h_1 h_0 \left( e^{\frac{k s}{c_0}}-1\right) (z_1 \left( e^{\frac{l s}{c_1}}-1)+z_2\right) +h_1^2 z_0 \left( e^{\frac{k s}{c_0}}+1\right) \left( e^{\frac{l s}{c_1}}-1\right) \nonumber \\&\left. \left. + \;2 h_0^2 (z_1-z_2) \left( e^{\frac{k s}{c_0}}-1\right) \right) \right) +l s z_0 (z_1-z_2) \varepsilon _0 \left( e^{\frac{k s}{c_0}}+1)\right) , \end{aligned}$$
(76)
$$\begin{aligned} \overline{d}_{G_1}(s)= & {} V_0 z_0 \left( e^{\frac{k s}{c_0}}-1\right) e^{-\frac{k s}{c_0}-\frac{l s}{c_1}} (\varepsilon _1 (k s z_0 (z_1-z_2) (e^{\frac{k s}{c_0}}+1)\nonumber \\&-\;\varepsilon _0 (h_1 h_0 \left( e^{\frac{k s}{c_0}}-1\right) (z_1 \left( e^{\frac{l s}{c_1}}-1)+z_2\right) +h_1^2 z_0 \left( e^{\frac{k s}{c_0}}+1\right) (e^{\frac{l s}{c_1}}-1)\nonumber \\&\left. \left. \left. +\;2 h_0^2 (z_1-z_2) \left( e^{\frac{k s}{c_0}}-1\right) \right) \right) +l s z_0 (z_1-z_2) \varepsilon _0 \left( e^{\frac{k s}{c_0}}+1\right) \right) . \end{aligned}$$
(77)
$$\begin{aligned}&\quad \quad \quad \quad \quad \quad \quad \quad \qquad \qquad \overline{D}_1(s)=\frac{\overline{n}_{D_1}(s)}{\overline{d}_{D_1}(s)} , \end{aligned}$$
(78)

where

$$\begin{aligned} \overline{n}_{D_1}(s)= & {} V_0 z_0 \varepsilon _0 \varepsilon _1 \left( e^{\frac{k s}{c_0}}-1\right) \left( -e^{-\frac{k s}{c_0}-\frac{l s}{c_1}}\right) \left( h_1 z_0 \left( e^{\frac{k s}{c_0}}+1\right) \left( e^{\frac{l s}{c_1}}-1\right) \left( (z_1+z_2) e^{\frac{l s}{c_1}}-z_1+z_2\right) \right. \nonumber \\&\left. +\,h_0 z_1 \left( e^{\frac{k s}{c_0}}-1\right) \left( (z_1+z_2) e^{\frac{2 l s}{c_1}}-z_1+z_2\right) \right) , \end{aligned}$$
(79)
$$\begin{aligned} \overline{d}_{D_1}(s)= & {} 4 s \left( \sinh \left( \frac{k s}{c_0}\right) \left( \sinh \left( \frac{l s}{c_1}\right) \left( \varepsilon _1 \left( k s z_0^2 z_2-\varepsilon _0 \left( h_1^2 z_0^2+h_0^2 z_1^2\right) \right) +l s z_2 z_0^2 \varepsilon _0\right) \right. \right. \nonumber \\&\left. +\,z_1 \cosh \left( \frac{l s}{c_1}\right) \left( h_0^2 (-z_2) \varepsilon _0 \varepsilon _1+k s z_0^2 \varepsilon _1+l s z_0^2 \varepsilon _0\right) \right) \nonumber \\&+\,z_0 \cosh \left( \frac{k s}{c_0}\right) \left( \sinh \left( \frac{l s}{c_1}\right) \left( \varepsilon _1 \left( k s z_1^2-\left( 2 h_0^2-2 h_1 h_0+h_1^2\right) z_2 \varepsilon _0\right) +l s z_1^2 \varepsilon _0\right) \right. \nonumber \\&\left. +\,z_1 \cosh \left( \frac{l s}{c_1}\right) \left( \varepsilon _1 \left( k s z_2-2 \left( h_0^2-h_1 h_0+h_1^2\right) \varepsilon _0\right) +l s z_2 \varepsilon _0\right) +2 h_1 (h_1-h_0) z_1 \varepsilon _0 \varepsilon _1\right) \nonumber \\&\left. +\,2 h_0 z_0 \varepsilon _0 \varepsilon _1 \left( (h_0-h_1) \left( z_2 \sinh \left( \frac{l s}{c_1}\right) +z_1 \cosh \left( \frac{l s}{c_1}\right) \right) +h_1 z_1\right) \right) . \end{aligned}$$
(80)

Appendix 2: Mathematica code for determining the numerical ILT using the modified DAC algorithm [11, 17]

The following Mathematica [23] source code is useful for determining the numerical inverse Laplace transform (ILT) of functions with jump discontinuities using the modified Dubner–Abate–Crump (DAC) algorithm [11, 17]. Figure 5 illustrates the stress time history in the target and use of the ILT algorithm for a set of synthetic flyer and target elastic and piezoelectric properties.

1.1 Mathematica code to compile the Laplace transform domain function \({\overline{\sigma }}_1(x,s)\)

$$\begin{aligned}&\mathbf{Stress }=\mathbf{Compile }\left[ \{\{s,\_\text {Complex}\}\},\mathbf{Module }\left[ \{l,k,x,\text {eo},\text {e0},\text {e1},\text {Ce0},\text {Ce1},\text {ers0},\text {ers1},\varepsilon 0,\varepsilon 1,\text {h0},\text {h1},\right. \right. \nonumber \\&\text {M0},\text {M1}, \uprho 0,\uprho 1,\text {c0},\text {c1},\text {V0},\text {z0},\text {z1},\text {z2},\text {t0}\},l=5 \times 10^{-3};k=10 \times 10^{-3};x=\frac{l}{2};\text {eo}=1.5;\nonumber \\&\text {Ce0}=2;\text {Ce1}=3; \text {e0}=4;\text {e1}=5; \text {ers0}=6;\text {ers1}=7;\varepsilon 0=\text {eo} \; \text {ers0};\varepsilon 1=\text {eo} \; \text {ers1}; \nonumber \\&\text {h0}=\frac{\text {e0}}{\varepsilon 0};\text {h1}=\frac{\text {e1}}{\varepsilon 1}; \text {M0}=\text {Ce0}+\text {e0}\; \text {h0}; \text {M1}=\text {Ce1}+\text {e1}\; \text {h1}; \uprho 0=8;\uprho 1=9;\nonumber \\&\left. \left. \text {c0}=\sqrt{\frac{\text {M0}}{\uprho 0}};\text {c1}=\sqrt{\frac{\text {M1}}{\uprho 1}};\text {V0}=5;\text {z0}=\uprho 0\; \text {c0};\text {z1}=\uprho 1\; \text {c1};\text {z2}=\text {z0}; \overline{\sigma }_1(x,s)\right] \right] ; \end{aligned}$$
(81)

\(\overline{\sigma }_1(x,s)\) in the above code is given by the following Laplace transform domain expression for the stress in the target

$$\begin{aligned} \overline{\sigma }_1(x,s)=\frac{\textit{Num}(x,s)}{\textit{Denom}(s)} , \end{aligned}$$
(82)

where

$$\begin{aligned} \textit{Num}(x,s)= & {} \text {V0} \text {z0} \left( e^{\frac{k s}{\text {c0}}}-1\right) e^{-\frac{s x}{\text {c1}}} \bigl (-\text {z1} e^{\frac{k s}{\text {c0}}+\frac{2 s x}{\text {c1}}} \bigl ({\varepsilon 1} \bigl ({\varepsilon 0} \bigl (2 \text {h0}^2 (\text {z2}-\text {z1})+\text {h0} \text {h1} (\text {z1}-\text {z2})+\text {h1}^2 \text {z0}\bigr )\nonumber \\&+\;k s \text {z0} (\text {z1}-\text {z2})\bigr )+l s \text {z0} {\varepsilon 0} (\text {z1}-\text {z2})\bigr )\nonumber \\&+\text {z1} e^{\frac{k s}{\text {c0}}+\frac{2 l s}{\text {c1}}} \bigl ({\varepsilon 1} \bigl ({\varepsilon 0} \bigl (-2 \text {h0}^2 (\text {z1}+\text {z2})+\text {h0} \text {h1} (\text {z1}+\text {z2})-\text {h1}^2 \text {z0}\bigr )\nonumber \\&+\;k s \text {z0} (\text {z1}+\text {z2})\bigr )+l s \text {z0} {\varepsilon 0} (\text {z1}+\text {z2})\bigr )-\text {h1} {\varepsilon 0} {\varepsilon 1} (\text {z1}+\text {z2}) (\text {h0} \text {z1}+\text {h1} \text {z0}) e^{\frac{s (\text {c0} (2 l+x)+\text {c1} k)}{\text {c0} \text {c1}}}\nonumber \\&+\;\text {h1} \text {z1} {\varepsilon 0} {\varepsilon 1} (\text {h0} \text {z1}+\text {h1} \text {z0}) e^{\frac{s (\text {c0} (l+2 x)+\text {c1} k)}{\text {c0} \text {c1}}}+\text {h1} \text {z1} {\varepsilon 0} {\varepsilon 1} (\text {h1} \text {z0}-\text {h0} \text {z1}) e^{\frac{k s}{\text {c0}}+\frac{l s}{\text {c1}}}\nonumber \\&-\;\text {h1} {\varepsilon 0} {\varepsilon 1} (\text {z1}-\text {z2}) (\text {h1} \text {z0}-\text {h0} \text {z1}) e^{\frac{k s}{\text {c0}}+\frac{s x}{\text {c1}}}+2 \text {h1}^2 \text {z0} \text {z1} {\varepsilon 0} {\varepsilon 1} e^{\frac{s (\text {c0} (l+x)+\text {c1} k)}{\text {c0} \text {c1}}}\nonumber \\&-\;\text {z1} e^{\frac{2 s x}{\text {c1}}} \bigl ({\varepsilon 1} \bigl ({\varepsilon 0} \bigl (2 \text {h0}^2 (\text {z1}-\text {z2})+\text {h0} \text {h1} (\text {z2}-\text {z1})+\text {h1}^2 \text {z0}\bigr )+k s \text {z0} (\text {z1}-\text {z2})\bigr )\nonumber \\&+\;l s \text {z0} {\varepsilon 0} (\text {z1}-\text {z2})\bigr )+\text {z1} e^{\frac{2 l s}{\text {c1}}} \bigl ({\varepsilon 1} \left( k s \text {z0} (\text {z1}+\text {z2})\right. \nonumber \\&-\,\left. {\varepsilon 0} \left( -2 \text {h0}^2 (\text {z1}+\text {z2})+\text {h0} \text {h1} (\text {z1}+\text {z2})+\text {h1}^2 \text {z0}\right) \right) \nonumber \\&+\;l s \text {z0} {\varepsilon 0} (\text {z1}+\text {z2})\bigr )-\text {h1} {\varepsilon 0} {\varepsilon 1} (\text {z1}+\text {z2}) e^{\frac{s (2 l+x)}{\text {c1}}} (\text {h1} \text {z0}-\text {h0} \text {z1})\nonumber \\&+\;\text {h1} \text {z1} {\varepsilon 0} {\varepsilon 1} e^{\frac{s (l+2 x)}{\text {c1}}} (\text {h1} \text {z0}-\text {h0} \text {z1})\nonumber \\&+\;\text {h1} \text {z1} {\varepsilon 0} {\varepsilon 1} e^{\frac{l s}{\text {c1}}} (\text {h0} \text {z1}+\text {h1} \text {z0})-\text {h1} {\varepsilon 0} {\varepsilon 1} (\text {z1}-\text {z2}) e^{\frac{s x}{\text {c1}}} (\text {h0} \text {z1}+\text {h1} \text {z0})+2 \text {h1}^2 \text {z0} \text {z1} {\varepsilon 0} {\varepsilon 1} e^{\frac{s (l+x)}{\text {c1}}}\bigr ) ,\nonumber \\ \end{aligned}$$
(83)

and

$$\begin{aligned} \textit{Denom}(s)= & {} s \left( {\varepsilon 1} \bigl ({\varepsilon 0} \bigl (-\text {h0}^2 \bigl (e^{\frac{k s}{\text {c0}}}-1\bigr ) \left( 2 \text {z0} \bigl (e^{\frac{k s}{\text {c0}}}-1\bigr ) \bigl (\text {z1} \bigl (e^{\frac{2 l s}{\text {c1}}}+1\bigr )+\text {z2} \bigl (e^{\frac{2 l s}{\text {c1}}}-1\bigr )\bigr )\nonumber \right. \right. \\&\left. +\;\text {z1} \bigl (e^{\frac{k s}{\text {c0}}}+1\bigr ) \bigl (\text {z1} \bigl (e^{\frac{2 l s}{\text {c1}}}-1\bigr )+\text {z2} \bigl (e^{\frac{2 l s}{\text {c1}}}+1\bigr )\bigr )\right) \nonumber \\&+2 \text {h0} \text {h1} \text {z0} \bigl (e^{\frac{k s}{\text {c0}}}-1\bigr )^2 \bigl (e^{\frac{l s}{\text {c1}}}-1\bigr ) \bigl (\text {z1} \bigl (e^{\frac{l s}{\text {c1}}}-1\bigr )\nonumber \\&+\;\text {z2} \bigl (e^{\frac{l s}{\text {c1}}}+1\bigr )\bigr )-\text {h1}^2 \text {z0} \bigl (e^{\frac{l s}{\text {c1}}}-1\bigr ) \bigl (\text {z0} \bigl (e^{\frac{2 k s}{\text {c0}}}-1\bigr ) \bigl (e^{\frac{l s}{\text {c1}}}+1\bigr )\nonumber \\&+\bigl (e^{\frac{2 k s}{\text {c0}}}+1\bigr ) \bigl (2 \text {z1} \bigl (e^{\frac{l s}{\text {c1}}}-1\bigr )+\text {z2} \bigl (e^{\frac{l s}{\text {c1}}}+1\bigr )\bigr )\bigr )\bigr )\nonumber \\&+\;k s \text {z0} \bigl (\text {z0} \bigl (e^{\frac{2 k s}{\text {c0}}}-1\bigr ) \bigl (\text {z1} \bigl (e^{\frac{2 l s}{\text {c1}}}+1\bigr )+\text {z2} \bigl (e^{\frac{2 l s}{\text {c1}}}-1\bigr )\bigr )\nonumber \\&+\text {z1} \bigl (e^{\frac{2 k s}{\text {c0}}}+1\bigr ) \bigl (\text {z1} \bigl (e^{\frac{2 l s}{\text {c1}}}-1\bigr )+\text {z2} \bigl (e^{\frac{2 l s}{\text {c1}}}+1\bigr )\bigr )\bigr )\bigr )\nonumber \\&+\;l s \text {z0} {\varepsilon 0} \bigl (\text {z0} \bigl (e^{\frac{2 k s}{\text {c0}}}-1\bigr ) \bigl (\text {z1} \bigl (e^{\frac{2 l s}{\text {c1}}}+1\bigr )+\text {z2} \bigl (e^{\frac{2 l s}{\text {c1}}}-1\bigr )\bigr )\nonumber \\&\left. +\text {z1} \bigl (e^{\frac{2 k s}{\text {c0}}}+1\bigr ) \bigl (\text {z1} \bigl (e^{\frac{2 l s}{\text {c1}}}-1\bigr )+\text {z2} \bigl (e^{\frac{2 l s}{\text {c1}}}+1\bigr )\bigr )\bigr )\right) . \end{aligned}$$
(84)

1.2 Mathematica code to perform the ILT of function Stress defined in “Mathematica code to compile the Laplace transform domain function \({\overline{\sigma }}_1(x,s)\)

$$\begin{aligned} \Sigma= & {} \mathbf{Compile }\bigl [\{\},\mathbf{Module }\bigl [\{\text {sumcp},\text {sumsp},\text {tf},\text {tol},a,\text {tot},\text {c0},\tau ,\text {dt},\sigma ,\arg ,\text {coeffs},\text {cospart},\text {c1},\text {c2},\text {sinpart},\nonumber \\&\text {kpd},t,\text {kpt}\},\text {tf}=0.1;\text {tol}=0.00001;a=-\frac{\mathbf{Log } (\text {tol})}{2. \text {tf}};\text {tot}=2048; \nonumber \\&\text {c0}=\mathbf{Stress }[a];\tau = 1000;\text {dt}=\frac{\text {tf}}{\tau };\nonumber \\&\mathbf{Table }\bigl [\text {sumcp}=0.;\text {sumsp}=0.;\mathbf{Do }\bigl [\text {kpd}=\frac{\pi \; k}{\text {tot}};\text {kpt}=\frac{\pi \; k}{\text {tf}};\nonumber \\&\sigma =\frac{\mathbf{Sin } [\text {kpd}]}{\text {kpd}};\text {coeffs}= \mathbf{Stress }[a+i \; \text {kpt}];\nonumber \\ \text {c1}= & {} \mathbf{Re }[\text {coeffs}];\text {c2}=\mathbf{Im }[\text {coeffs}];\text {cospart}=\text {c1} \; \sigma \; \mathbf{Cos } [\text {kpt}\; t];\text {sumcp}=\text {cospart}+\text {sumcp};\nonumber \\ \text {sinpart}= & {} \text {c2}\; \sigma \; \mathbf{Sin } (\text {kpt} \; t);\text {sumsp}=\text {sinpart}+\text {sumsp},\{k,1,\text {tot}\}\bigr ];\frac{\mathbf{Exp }(a\; t) \bigl (\frac{\text {c0}}{2.}+\text {sumcp}-\text {sumsp}\bigr )}{\text {tf}},\nonumber \\&\quad \{t,\text {dt},\text {tf},\text {dt}\}\bigr ]\bigr ],\mathbf{CompilationOptions }\rightarrow \nonumber \\&\{\text {``InlineExternalDefinitions''}\rightarrow \mathbf{True },\text {"InlineCompiledFunctions"}\rightarrow \mathbf{True }\}\bigr ]; \end{aligned}$$
(85)

1.3 Mathematica code to plot the numerical ILT of \(\Sigma \) defined in (85)

(86)

Appendix 3: Verification of the numerical ILT solutions with the closed-form results of Le [12,13]

In this Appendix 3, we determine the relative error between the exact solution for the electric displacement derived by Le [12, 13] and the numerical ILT solution using the Mathematica algorithm listed in “Appendix 2.” Le [12, 13] studies the problem of a finite-length piezoceramic rod, traveling at an initial constant velocity, that impacts a second, identical, but stationary piezoceramic rod; exact solutions for electric displacement and stress are provided, up until the first wave reflection, for the case when the external ends of the rods are electrically short-circuited. For identical piezoceramic rods, the electric displacement can be written as

$$\begin{aligned} D(t) = \frac{\varepsilon h}{2 l} [u(l,t)-u(-l,t)]. \end{aligned}$$
(87)

Le [12, 13] provides closed-form analytical expressions for the relative displacement \(u(l,t)-u(-l,t)\) of the rod ends used in Eq. (87) and illustrated in Fig. 6 for the time interval \(0 \le t \le 2l/c\). Since the piezoceramic rods are finite in extent, the electric displacement sinusoidally oscillates in time and does not diminish in amplitude as in the example where the target is backed by a semi-infinite half-space (Fig. 4); the PZT-4 constants used to generate the solutions appearing in Fig. 6 can be found in Table 1.

Fig. 6
figure 6

Comparison of numerical and exact displacement current time histories in a 5-mm-thick PZT-4 target under impact by a 5-mm-thick PZT-4 flyer with initial velocity \(V_0= 5\) m/s, using PZT-4 material parameters from Table 1; the exact solution of Le [13] is plotted for the time interval time \(0 \le t \le 2l/c\)

If D(t) represents the exact value of the electric displacement given by Eq. (87), and \(\widetilde{D}(t)\) is the approximate ILT value; then, the relative error, relerr, of \(\widetilde{D}(t)\) is given by

$$\begin{aligned} \text {relerr} = 1 - \frac{\widetilde{D}(t)}{D(t)}. \end{aligned}$$
(88)

It can be shown that \(-\text {Log}_{10}[|\text {relerr}|]\) (see Fig. 7) is a measure of the approximate number of significant digits in the solution. Note that relerr is defined only if \(D(t) \ne 0\).

Fig. 7
figure 7

Numerical accuracy of the modified DAC displacement current solution depicted in Fig. 6 for two tolerance values tol \(= 10^{-5}\) and tol \(= 10^{-7}\) used in the ILT algorithm [Eq. (85)] over the time interval \(0 \le t \le 2l/c\); over this interval, the numerical solution accuracy ranges from about 3 to 9 significant digits

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazonas, G.A., Wildman, R.A., Hopkins, D.A. et al. Longitudinal impact of piezoelectric media. Arch Appl Mech 86, 497–515 (2016). https://doi.org/10.1007/s00419-015-1042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1042-3

Keywords

Navigation