Skip to main content
Log in

Time-dependent analysis of composite and prestressed beams using the slope deflection method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The paper presents the viscoelastic analysis of composite and prestressed beams using the slope deflection method. For the fixed-end frame element, considering the viscoelastic behavior of concrete and relaxation of prestressing steel, the integral relation between the generalized element forces and the generalized element displacements, i.e., the element stiffness matrix, is derived and presented using the mathematical operators. From the element and system equilibrium equations, the integral equations of the problem with unknown displacements are formulated. Comparing to the analysis of homogeneous elastic structures, the governing equations of the problem are similar, but with integral equations instead of algebraic equations. In the presented method, the solution to the problem is derived using the linear integral operators without introducing any additional mathematical approximations, apart from the adopted rheological relations for constitute materials. In addition, the obtained expressions are general in a sense that any concrete creep functions can be used and the element can be with a variable cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Rferences

  1. Chaudhary S., Pendharkar U., Nagpal A.K.: Hybrid Procedure for cracking and time-dependent effects in composite frames at Service Load. J. Struct. Eng. 133(2), 166–175 (2007). doi:10.1061/(ASCE)0733-9445(2007)133:2(166)

    Article  Google Scholar 

  2. Dezi L., Leoni G., Tarantino A.M.: Time-dependent analysis of prestressed composite beams. J. Struct. Eng. 121(4), 621 (1995)

    Article  Google Scholar 

  3. Dezi L., Leoni G., Tarantino A.M.: Algebraic methods for creep analysis of continuous composite beams. J. Struct. Eng. 122(4), 423 (1996)

    Article  Google Scholar 

  4. Fragiacomo M., Amadio C., Macorini L.: Finite-element model for collapse and long-term analysis of steel–concrete composite beams. J. Struct. Eng. 130(3), 489–497 (2004). doi:10.1061/(ASCE)0733-9445(2004)130:3(489)

    Article  Google Scholar 

  5. Gilbert R.I., Bradford M.A.: Time-dependent behavior of continuous composite beams at service loads. J. Struct. Eng. 121(2), 319 (1995)

    Article  Google Scholar 

  6. Partov D., Kantchev V.: Time-dependent analysis of composite steel–concrete beams using integral equation of volterra, according to Eurocode 4. Eng. Mech. 16(5), 367–392 (2009)

    Google Scholar 

  7. Xue W., Ding M., He C., Li J.: Long-term behavior of prestressed composite beams at service loads for one year. J. Struct. Eng. 134(6), 930–937 (2008). doi:10.1061/(ASCE)0733-9445(2008)134:6(930)

    Article  Google Scholar 

  8. Fritz B.: Verbundträger. Springer, Berlin (1961)

    Book  MATH  Google Scholar 

  9. Djuric M.: Teorija spregnutih i prethodno napregnutih konstrukcija. Naucno delo, Beograd (1963)

    Google Scholar 

  10. Bazant Z.P.: Prediction of concrete creep effects using age-adjusted effective modulus method. J. Am. Concr. Inst. 69, 212–217 (1972)

    Google Scholar 

  11. Kwak H.-G., Seo Y.-J.: Long-term behavior of composite girder bridges. Comput. Struct. 74(5), 583–599 (2000). doi:10.1016/S0045-7949(99)00064-4

    Article  Google Scholar 

  12. Macorini L., Fragiacomo M., Amadio C., Izzuddin B.A.: Long-term analysis of steel–concrete composite beams: FE modelling for effective width evaluation. Eng. Struct. 28(8), 1110–1121 (2006). doi:10.1016/j.engstruct.2005.12.002

    Article  Google Scholar 

  13. Nguyen Q.-H., Hjiaj M., Uy B.: Time-dependent analysis of composite beams with continuous shear connection based on a space-exact stiffness matrix. Eng. Struct. 32(9), 2902–2911 (2010). doi:10.1016/j.engstruct.2010.05.009

    Article  Google Scholar 

  14. Dezi L., Gara F.: Time-dependent analysis of shear-lag effect in composite beams. J. Eng. Mech. 127(1), 71 (2001)

    Article  Google Scholar 

  15. Mandel J.: Sur les corps viscoélastiques linéaires dont les propriétés dépendent de l’âge. Comples Rendus de l’Académie des Sciences 247, 175–178 (1958)

    MATH  Google Scholar 

  16. Mandel, J: Un principe de correspondance pour les corps viscoélastiques linéaires vieillissants. In: Hult, J. Mechanics of Visco-elastic Media and Bodies, 1975, Springer, Berlin (1975)

  17. Huet, C.: Opérateurs intégrodifférentiels matriciels pour l’étude des systems à réponse ifférée présentant du vieillirsement. In: Comptes Rendus de l’Académie des Sciences, Série A, 278, 1119-1122 (1974)

  18. Lazić, J.D., Lazić, V.: General Theory of Composite and Prestressed Structures, vol. DXLII. The Serbian Academy of Sciences and Arts, Belgrade (1982)

  19. Lazić J.D., Lazić V.B.: Bending of a composite beam-column. Arch. Appl. Mech. 61(6–7), 361–372 (1991). doi:10.1007/BF00790127

    MATH  Google Scholar 

  20. Lazić V.: Mathematical Theory of Composite and Prestressed Structures. Mathematical institute SANU, Belgrade (2003)

    MATH  Google Scholar 

  21. Lazić, V.B., Lazić, J.D.: Theory of open thin-walled composite and prestressed beams. Arch. Appl. Mech. 61(8), 532–547 (1991). doi:10.1007/BF00786967

  22. Deretic-Stojanovic B.: The equivalent joind loads of the composite member. Theor. Appl. Mech. 19, 23–37 (1993)

    MATH  Google Scholar 

  23. Deretic-Stojanovic B.: The operator stiffness matrix of the fixed-end composite member. Theor. Appl. Mech. 23, 35–54 (1997)

    MATH  Google Scholar 

  24. Deretic-Stojanovic, B.: Design of composite structures by the slope deflection method. In: Xiao, Y., Mahin, S.A. (eds.) 6th ASCCS Conference, Composite and Hybrid Structures, Los Angeles (2000)

  25. McHenry D.A.: New aspect of creep in concrete and its application to design. Proc. Am. Soc. Test. Mater. 43, 1069–1084 (1943)

    Google Scholar 

  26. Boltzmann L.: Zur Theorie der elastischen Nachwirkung. Ann. Phys. 241(11), 430–432 (1878). doi:10.1002/andp.18782411107

    Article  Google Scholar 

  27. Volterra V.: Theory of Functionals of Integral and Integro-differential Equations. Dover Publications Inc, New York (1959)

    MATH  Google Scholar 

  28. Deretic-Stojanovic, B.: (2002) The stiffness matrix of the composite member type “g”. Paper presented at the 8th Symposium on Theoretical and Applied Mechanics, Skopje, October (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana M. Kostić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deretić-Stojanović, B., Kostić, S.M. Time-dependent analysis of composite and prestressed beams using the slope deflection method. Arch Appl Mech 85, 257–272 (2015). https://doi.org/10.1007/s00419-014-0917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0917-z

Keywords

Navigation