Skip to main content
Log in

Oblique edge crack in an orthotropic material under thermal loading

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

An oblique edge crack in an orthotropic thermoelastic solid under thermal loading is analyzed, and thermally insulated and conductive cracks are considered. The thermal edge crack problem is formulated by the transformed function representation for linear thermoelasticity. The stress intensity factors and energy release rate induced by incompatible thermal strains are obtained, which are dependent on one geometric parameter and three orthotropic material parameters. The explicit dependence on one elastic orthotropic parameter is obtained by the orthotropy rescaling technique, and the influence of the other three parameters is examined numerically. The important influence of the material parameters on the stress intensity factors and energy release rate is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasebe N., Qian J., Chen Y.Z.: Fundamental solution for half plane with an oblique edge crack. Eng. Anal. Bound. Elem. 17, 263–267 (1996)

    Article  Google Scholar 

  2. Beghini M., Bertini L., Fontanari V.: Stress intensity factors for an inclined edge crack in a semiplane. Eng. Fract. Mech. 62, 607–613 (1999)

    Article  Google Scholar 

  3. Tweed J., Melrose G., Kerr G.: Stress intensification due to an edge crack in an anisotropic elastic solid. Int. J. Fract. 106, 47–56 (2000)

    Article  Google Scholar 

  4. Chen Y.Z., Lin X.Y., Wang Z.X.: An improved technique for the solution of edge crack problem for finite plate. Comput. Mater. Sci. 47, 128–134 (2009)

    Article  Google Scholar 

  5. Das S., Mukhopadhyay S., Prasad R.: Stress intensity factor of an edge crack in bonded orthotropic materials. Int. J. Fract. 168, 117–123 (2011)

    Article  MATH  Google Scholar 

  6. Beom H.G., Cui C.B., Jang H.S.: Application of an orthotropy rescaling method to edge cracks and kinked cracks in orthotropic two-dimensional solids. Int. J. Eng. Sci. 51, 14–31 (2012)

    Article  MathSciNet  Google Scholar 

  7. Beom H.G., Jang H.S.: Effect of elastic constants on crack channeling in a thin film bonded to an orthotropic substrate. Arch. Appl. Mech. 83, 1577–1589 (2013)

    Article  MATH  Google Scholar 

  8. Choi S.R., Chong C.H., Chai Y.S.: Interfacial edge crack in two bonded dissimilar orthotropic quarter planes under anti-plane shear. Int. J. Fract. 67, 143–150 (1994)

    Article  Google Scholar 

  9. Lee K.W., Earmme Y.Y.: An interfacial edge crack in anisotropic bimaterial under anti-plane singularity. Int. J. Fract. 104, 15–22 (2000)

    Article  Google Scholar 

  10. Chen Y.Z., Wang Z.X., Li F.L.: Periodic group edge crack problem of half-plane in antiplane elasticity. Commun. Numer. Methods Eng. 24, 833–840 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li X.-F., Lee K.Y.: Closed-form solution for an orthotropic elastic strip with a crack perpendicular to the edges under arbitrary antiplane shear. ZAMM-Z. Angew. Math. Mech. 89, 370–382 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Beom H.G., Cui C.B.: Oblique edge crack in an anisotropic material under antiplane shear. Eur. J. Mech. A-Solids 30, 893–901 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Erdogan F.: Stress distribution in bonded dissimilar materials with cracks. J. Appl. Mech. 32, 403–410 (1965)

    Article  MathSciNet  Google Scholar 

  14. Akisanya A.R., Fleck N.A.: The edge cracking and decohesion of thin films. Int. J. Solids Struct. 31, 3175–3199 (1994)

    Article  MATH  Google Scholar 

  15. Yu H.H., He M.Y., Hutchinson J.W.: Edge effects in thin film delamination. Acta Mater. 49, 93–107 (2001)

    Article  Google Scholar 

  16. Zhao L.G., Lu T.J., Fleck N.A.: Crack channelling and spalling in a plate due to thermal shock loading. J. Mech. Phys. Solids 48, 867–897 (2000)

    Article  MATH  Google Scholar 

  17. Jones I.S.: Small edge cracks in a semi-infinite solid subjected to thermal stratification. Theor. Appl. Fract. Mech. 39, 7–21 (2003)

    Article  Google Scholar 

  18. Qing H., Yang W., Lu J., Li D.-F.: Thermal–stress analysis for a strip of finite width containing a stack of edge cracks. J. Eng. Math. 61, 161–169 (2008)

    Article  MATH  Google Scholar 

  19. Rizk A.E.A., Hrairi M.: Edge-cracked bimaterial systems under thermal heating. Int. J. Solids Struct. 46, 1648–1658 (2009)

    Article  MATH  Google Scholar 

  20. Lu T.J., Fleck N.A.: The thermal shock resistance of solids. Acta Mater. 46, 4755–4768 (1998)

    Article  Google Scholar 

  21. Chen X., Liu Q., Ma Q.: A parametric investigation on thermally driven edge cracking of a coating-substrate system. J. Coat. Technol. Res. 9, 541–549 (2012)

    Article  Google Scholar 

  22. Beom H.G.: Thermoelastic in-plane fields in a linear anisotropic solid. Int. J. Eng. Sci. 69, 49–60 (2013)

    Article  MathSciNet  Google Scholar 

  23. Nowacki W.: Thermoelasticity. Reading: Addison Wesley, (1962)

  24. Lekhnitskii S.G.: Theory of Elasticity of an Anisotropic Body. Holden-Day, Inc., San Francisco (1963)

    MATH  Google Scholar 

  25. Suo Z.: Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. R. Soc. Lond. A427, 331–358 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Beom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H.S., Beom, H.G. Oblique edge crack in an orthotropic material under thermal loading. Arch Appl Mech 84, 1903–1916 (2014). https://doi.org/10.1007/s00419-014-0894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0894-2

Keywords

Navigation