Skip to main content
Log in

Generalizations of Snoek equation for anisotropic media with magnetic relaxation

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Using the general methods of non-equilibrium thermodynamics, a theory for anisotropic magnetizable media in which magnetic relaxation phenomena occur is formulated. In this paper, some results are revised, some others are new. First, a critical revision is given in the case where it is assumed that n microscopic phenomena give rise to magnetic relaxation, and the contributions of these phenomena to the macroscopic magnetization are introduced as internal variables in the Gibbs relation. Phenomenological equations and linear state equations are formulated, and magnetic relaxation equations generalizing Snoek equation are obtained. Then, new results are derived in the special case where all cross-effects are neglected, except for possible effects among the different types of magnetic relaxation phenomena, and by direct computations, generalized Snoek equations are worked out when the magnetization axial vector is additively composed of two irreversible parts, and in the case of anisotropic Snoek media and anisotropic De Groot–Mazur media. Also, particular results are presented and reviewed in the cases where the considered media have symmetry properties, under orthogonal transformations, which are i) invariant with respect to all the rotations of the frame of axes; ii) invariant with respect to all the rotations and inversions of the frame of axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kluitenberg G.A.: On dielectric and magnetic relaxation phenomena and non-equilibrium thermodynamics. Physica 68, 75–92 (1973)

    Article  Google Scholar 

  2. Kluitenberg G.A.: On dielectric and magnetic relaxation phenomena and vectorial internal degrees of freedom in thermodynamics. Phys. A 87, 302–330 (1977)

    Article  Google Scholar 

  3. Kluitenberg G.A.: On vectorial internal variables and dielectric and magnetic relaxation phenomena. Phys. A 109, 91–122 (1981)

    Article  MathSciNet  Google Scholar 

  4. Prigogine, I.: Etude Thermodynamique des Phénomènes Irréversibles, Dunod, Paris et Editions Desoer, Liège (1947)

  5. De Groot S.R.: Thermodynamics of Irreversible Processes. North-Holland Publishing Company, Amsterdam and Interscience Publishers Inc., New York (1951)

    MATH  Google Scholar 

  6. Meixner J., Reik H.G.: Thermodynamik der Irreversiblen Prozesse, Handbuch der Physik, Band III/2. Springer, Berlin (1959)

    Google Scholar 

  7. Prigogine I.: Introduction to Thermodynamics of Irreversible Processes. Wiley, New York (1961)

    MATH  Google Scholar 

  8. De Groot S.R., Mazur P.: Non-equilibrium Thermodynamics. North-Holland Publishing Company, Amsterdam and Interscience Publishers Inc., New York (1962)

    Google Scholar 

  9. Kluitenberg, G.A.: Plasticity and Non-Equilibrium Thermodynamics, CISM Lecture Notes, Springer, Wien, New York, 1984

  10. Snoek, J.L.: Physica 5, 663 (1938)

  11. Restuccia L., Kluitenberg G.A.: On generalizations of the Snoek equation for magnetic relaxation phenomena. Atti Accademia Peloritana dei Pericolanti LXVII, 141–194 (1989)

    MathSciNet  Google Scholar 

  12. Restuccia L.: On a thermodynamic theory for magnetic relaxation phenomena due to n microscopic phenomena described by n internal variables. J. Non-Equilib. Thermodyn. 35, 379–413 (2010)

    Article  MATH  Google Scholar 

  13. Kluitenberg G.A.: A thermodynamic derivation of the stress–strain relations for Burgers media and related substances. Physica 38, 513–548 (1968)

    Article  Google Scholar 

  14. Restuccia L., Kluitenberg G.A.: On generalizations of the Debye equation for dielectric relaxation. Phys. A 154, 157–182 (1988)

    Article  Google Scholar 

  15. Maugin G.A.: A continuum theory of deformable ferrimagnetic bodies. I. Field equations. J. Math. Phys. 17(9), 1727–1738 (1976)

    Article  MATH  Google Scholar 

  16. Maugin G.A.: A continuum theory of deformable ferrimagnetic bodies. II. Thermodynamics, constitute theory. J. Math. Phys. 17(9), 1739–1751 (1976)

    Article  MATH  Google Scholar 

  17. Maugin G.A.: The Method of Virtual Power in Continuum Mechanics: Application to Coupled Fields (Review Article). Acta Mech. 35, 1–70 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maugin G.A.: Sur la dynamique des milieux déformables magnétisés avec spin magnétique. J. Méc. 13(1), 75–96 (1974)

    MathSciNet  MATH  Google Scholar 

  19. Maugin, G.A.: Continuum mechanics of electromagnetic solids. In: Achenbach, J.D., Budiansky, B., Koiter, W.T., Lauwerier, H.A., Van Wijngaarden, L. (eds.) North-Holland Series in Applied Mathematics and Mechanics, vol. 33. North-Holland, Amsterdam (1988)

  20. Gurevich A.G.: Magnetic Resonance in Ferrites and Antiferromagnets (in Russian). Nauka, Moscow (1973)

    Google Scholar 

  21. Kittel C.: Introduction to Solid State Physics, 3rd edn.. Wiley, New York (1971)

    Google Scholar 

  22. Chikazumi S.: Physics of Magnetism. Wiley, New York (1966)

    Google Scholar 

  23. Turov E.A.: Physical Properties of Magnetically Ordered Crystals. Academic, New York (1965)

    Google Scholar 

  24. Smith J., Wijn H.P.: Ferrites. Wiley, New York (1959)

    Google Scholar 

  25. Muschik, W., Restuccia, L.: Terminology and classifications of special versions of continuum thermodynamics. SIMAI e-Lecture Notes (2006). doi:10.1685/CSC06120

  26. Muschik W., Papenfuss C., Ehrentraut H.: Concepts of Continuum Thermodynamics. Kielce University of Technology, Technische Universitat, Berlin (1996)

    Google Scholar 

  27. Muschik W.: Aspects of Non-equilibrium Thermodynamics. World Scientific, Singapore (1990)

    Google Scholar 

  28. Muschik, W.: Non-equilibrium Thermodynamics with Application to Solids, CISM Courses and Lectures, N.336, Springer, Wien-New York (1993)

  29. Muschik W., Papenfuss C., Ehrentraut H.: A sketch of continuum Thermodynamics. J. Non-Newton. Fluid Mech. 96, 255–299 (2001)

    Article  MATH  Google Scholar 

  30. Jou D., Casas-Vazquez J., Lebon G.: Extended irreversible thermodynamics, 3rd edn.. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  31. Jou D., Restuccia L.: Mesoscopic transport equations and contemporary thermodynamics: an introduction. Contemp. Phys. 52(5), 465–474 (2011)

    Article  Google Scholar 

  32. Preston, S., Vargo, J.: Indefinite metric of R. Mrugala and the geometry of thermodynamical phase state, International Conference and Summerschool Proc.s THERMOCON ’05, Thermal Theories of Continua: Survey and Developments, Atti Accademia Peloritana dei Pericolanti di Messina, LXXXVI, Suppl. 1 (2008). doi:10.1478/C1S0801019

  33. Mrugala, R.: Geometrical methods in thermodynamics. In: Sieniutycz, S., de Vos, A. (eds.) Thermodynamics of Energy Conversion and Transport, vol. 257. Springer, Berlin. (2000)

  34. Landolt-Börnstein.: Numerical Data and Functional Relationships in Science and Technology, Springer, (1982)

  35. Muschik W.: A phenomenological foundation of non-linear Onsager–Casimir reciprocity relations. J. Non-Equilib. Thermodyn. 2, 109 (1977)

    Article  Google Scholar 

  36. Muschik W.: A phenomenological foundation of non-linear O–C reciprocal relations. Periodica Polytechnica Ser. Chem. Eng. 42, 85–96 (1998)

    Google Scholar 

  37. Olive, M., Auffray, N.: Symmetry classes for odd-order tensors. Zeitschrift fuer Angewandte Mathematik und Mechanik (2013). doi:10.1002/zamm.201200225

  38. Olive M., Auffray N.: Symmetry classes for even-order tensors. Math. Mech. Complex Syst. 1(2), 177–210 (2013)

    Article  MATH  Google Scholar 

  39. Jeffreys H.: Cartesian Tensors. Cambridge at the University Press, Cambridge (1957)

    Google Scholar 

  40. Chandrasekharaiah D.S., Debnath L.: Continuum Mechanics. Academic Press, Boston (1994)

    MATH  Google Scholar 

  41. Kluitenberg G.A.: A note on the thermodynamics of Maxwell bodies, Kelvin bodies (Voigt bodies), and fluids. Physica 28, 561–568 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kluitenberg, G.A., Ciancio, V.: The stress–strain–temperature relation for anisotropic Kelvin–Voigt media, Atti Acc. Sc. Lett. ed Arti di Palermo, XL(4), 107 (1980–1981)

  43. Ciancio V., Restuccia L.: Asymptotic waves in anelastic media without memory (Maxwell media). Physica 131A, 251–262 (1985)

    Article  MathSciNet  Google Scholar 

  44. Ciancio V., Restuccia L.: Nonlinear dissipative waves in viscoanelastic media. Physica 132A, 309–320 (1985)

    MathSciNet  Google Scholar 

  45. Ciancio V., Restuccia L.: The generalized Burgers equation in viscoanelastic media with memory. Physica 142A, 309–320 (1987)

    Article  Google Scholar 

  46. Ciancio V., Restuccia L., Kluitenberg G.A.: A thermodynamic derivation of equations for dielectric relaxation phenomena in anisotropic polarizable media. J. Non-Equilib. Thermodyn. 15, 157–171 (1990)

    Google Scholar 

  47. Restuccia L., Kluitenberg G.A.: On the heat dissipation function for dielectric relaxation phenomena in anisotropic media. Int. J. Eng. Sci. 30(3), 305–315 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Restuccia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restuccia, L. Generalizations of Snoek equation for anisotropic media with magnetic relaxation. Arch Appl Mech 84, 1539–1563 (2014). https://doi.org/10.1007/s00419-014-0881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0881-7

Keywords

Navigation