Skip to main content
Log in

Crack solutions and weight functions for plane problems in three-dimensional quasicrystals

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The plane problems of an elliptic hole and a crack in three-dimensional quasicrystals subject to far-field loadings are studied. The generalized Stroh formalism is adopted here, and the explicit solutions for the coupled fields are obtained in the closed form. When the elliptic hole reduces to a crack, the analytical expressions for both the entire fields and the asymptotic fields near the crack tip are determined. The crack theory of quasicrystals, including the determination of the field intensity factors, crack opening displacements, crack tip energy release rates and so on, is a prerequisite. Applying Betti’s theorem of reciprocity, the weight functions for a quasicrystal body with a crack are derived. The weight functions provide a means of calculating the intensity factors for the crack when both phonon and phason point forces are imposed at arbitrary locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athanasiou N.S., Politis C., Spirlet J.C., Baskoutas S., Kapaklis V.: The significance of valence electron concentration on the formation mechanism of some ternary aluminum-based quasicrystals. Int. J. Mod. Phys. B 16(31), 4665–4683 (2002)

    Article  Google Scholar 

  2. Barnett D.M., Lothe J.: Line force loadings on anisotropic half-spaces and wedges. Phys. Norv. 8, 13–22 (1975)

    Google Scholar 

  3. Bueckner H.F.: Novel principle for the computation of stress intensity factors. Z. Angew. Math. Mech. 50, 529–546 (1970)

    MATH  MathSciNet  Google Scholar 

  4. Dai M.X., Urban K.: Twins in icosahedral Al-Cu-Fe. Philos. Mag. Lett. 67(2), 67–71 (1993)

    Article  Google Scholar 

  5. Ding D.H., Yang W.G., Hu C.Z., Wang R.H.: Generalized elasticity theory of quasicrystals. Phys. Rev. B 48(10), 7003–7010 (1993)

    Article  Google Scholar 

  6. Ebert P., Feuerbacher M., Tamura N., Wollgarten M., Urban K.: Evidence for a cluster-based structure of AlPdMn single quasicrystals. Phys. Rev. Lett. 77(18), 3827–3830 (1996)

    Article  Google Scholar 

  7. Fan T.Y., Mai Y.W.: Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials. Appl. Mech. Rev. 57, 325–343 (2004)

    Article  Google Scholar 

  8. Gao Y., Ricoeur A.: Three-dimensional analysis of a spheroidal inclusion in a two-dimensional quasicrystal body. Philos. Mag. 92(34), 4334–4353 (2012)

    Article  Google Scholar 

  9. Gao Y., Ricoeur A., Zhang L.: Plane problems of cubic quasicrystal media with an elliptic hole or a crack. Phys. Lett. A 375, 2775–2781 (2011)

    Article  Google Scholar 

  10. Gao Y., Zhao B.S.: General solutions of three-dimensional problems for two-dimensional quasicrystals. Appl. Math. Model. 33(8), 3382–3391 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gao Y., Zhao Y.T., Zhao B.S.: Boundary value problems of holomorphic vector functions in 1D QCs. Phys. B 394(1), 56–61 (2007)

    Article  Google Scholar 

  12. Hu C.Z., Wang R.H., Ding D.H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63(1), 1–39 (2000)

    Article  MathSciNet  Google Scholar 

  13. Hu C.Z., Wang R.H., Yang W.G., Ding D.H.: Point groups and elastic properties of two-dimensional quasicrystals. Acta Crystallogr. Sect. A 52, 251–256 (1996)

    Article  Google Scholar 

  14. Hwu C.: Thermal stresses in an anisotropic plate disturbed by an insulated elliptic hole or crack. ASME J. Appl. Mech. 57(4), 916–922 (1990)

    Article  MATH  Google Scholar 

  15. Letoublon, A., De Boissieu,M., Boudard,M., Mancini, L.,Gastaldi, J., Hennion, B., Caudron, R., Bellissent, R.: Phason elastic constants of the icosahedral Al-Pd-Mn phase derived from diffuse scattering measurements.Philos. Mag. Lett. 81(4), 273–283 (2001)

    Article  Google Scholar 

  16. Levine D., Lubensky T.C., Ostlund S., Ramaswamy S., Steinhardt P.J., Toner J.: Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys. Rev. Lett. 54(14), 1520–1523 (1985)

    Article  Google Scholar 

  17. Levine D., Steinhardt P.J.: Quasi-crystals: a new class of ordered structure. Phys. Rev. Lett. 53(26), 2477–2480 (1984)

    Article  Google Scholar 

  18. Levine D., Steinhardt P.J.: Quasicrystals. 1. Definition and structure. Phys. Rev. B 34(2), 596–616 (1986)

    Article  Google Scholar 

  19. Li X.F., Fan T.Y.: New method for solving elasticity problems of some planar quasicrystals and solutions. Chin. Phys. Lett. 15, 278–280 (1998)

    Article  Google Scholar 

  20. Li X.F., Fan T.Y., Sun Y.F.: A decagonal quasicrystal with a Griffith crack. Philos. Mag. A 79, 1942–1953 (1999)

    Google Scholar 

  21. Lubensky T.C., Ramaswamy S., Joner J.: Hydrodynamics of icosahedral quasicrystals. Phys. Rev. B 32(11), 7444–7452 (1985)

    Article  Google Scholar 

  22. Ma L.F., Chen Y.H.: Weight functions for interface cracks in dissimilar anisotropic piezoelectric materials. Int. J. Fract. 110(3), 263–279 (2001)

    Article  Google Scholar 

  23. McMeeking R., Ricoeur A.: The weight function for cracks in piezoelectrics. Int. J. Solids Struct. 40(22), 6143–6162 (2003)

    Article  MATH  Google Scholar 

  24. Muskhelishvili N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  25. Pak Y.E.: Crack extension force in a piezoelectric material. ASME J. Appl. Mech. 57, 647–653 (1990)

    Article  MATH  Google Scholar 

  26. Park J.Y., Ogletree D.F., Salmeron M., Ribeiro R.A., Canfield P.C., Jenks C.J., Thiel P.A.: High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309(5739), 1354–1356 (2005)

    Article  Google Scholar 

  27. Park J.Y., Sacha G.M., Enachescu M., Ogletree D.F., Ribeiro R.A., Canfield P.C., Jenks C.J., Thiel P.A., Saenz J.J., Salmeron M.: Sensing dipole fields at atomic steps with combined scanning tunneling and force microscopy. Phys. Rev. Lett. 95(13), 136802 (2005)

    Article  Google Scholar 

  28. Peng Y.Z., Fan T.Y.: Perturbation method solving elastic problems of icosahedral quasicrystals containing a circular crack. Chin. Phys. 9, 764–766 (2000)

    Article  Google Scholar 

  29. Rice J.R.: Some remarks on elastic crack-tip stress fields. Int. J. Solids Struct. 8, 751–758 (1972)

    Article  MATH  Google Scholar 

  30. Rice, J.R.: Weight function theory for three-dimensional elastic crack analysis. In: Wei, R.P., Gangloff, R.P. (eds.) Fracture Mechanics: Perspectives and Directions (Twentieth Symposium). American Society for Testing and Materials, Philadelphia, pp. 29–57 (1989)

  31. Shechtman D., Blech I., Gratias D., Cahn J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984)

    Article  Google Scholar 

  32. Socolar J.E.S.: Simple octagonal and dodecagonal quasicrystals. Phys. Rev. B 39(15), 10519–10551 (1989)

    Article  MathSciNet  Google Scholar 

  33. Stadnik Z.: Physical Properties of Quasicrystals, vol. 126. Springer, Berlin (1999)

    Book  Google Scholar 

  34. Stroh A.N.: Dislocations and cracks in anisotropic elasticity. Philos. Mag. 3, 625–646 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  35. Stroh A.N.: Steady state problems in anisotropic elasticity. J. Math. Phys. 41, 77–103 (1962)

    MATH  MathSciNet  Google Scholar 

  36. Suo Z., Kuo C.M., Barnett D.M., Willis J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40(4), 739–765 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tanaka K., Mitarai Y., Koiwa M.: Elastic constants of Al-based icosahedral quasicrystals. Philos. Mag. A 73(6), 1715–1723 (1996)

    Article  Google Scholar 

  38. Ting T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  39. Ting T.C.T.: Recent developments in anisotropic elasticity. Int. J. Solids Struct. 37(1–2), 401–409 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wollgarten M., Beyss M., Urban K., Liebertz H., Koster U.: Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism. Phys. Rev. Lett. 71(4), 549–552 (1993)

    Article  Google Scholar 

  41. Zhou W.M., Fan T.Y.: Plane elasticity problem of two-dimensional octagonal quasicrystals and crack problem. Chin. Phys. 10, 743–747 (2001)

    Article  Google Scholar 

  42. Zhu A.Y., Fan T.Y.: Elastic analysis of a mode II crack in an icosahedral quasicrystal. Chin. Phys. 16(4), 1111–1118 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ricoeur, A., Zhang, LL. et al. Crack solutions and weight functions for plane problems in three-dimensional quasicrystals. Arch Appl Mech 84, 1103–1115 (2014). https://doi.org/10.1007/s00419-014-0868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0868-4

Keywords

Navigation