Skip to main content
Log in

Micromechanical analysis of fibrous piezoelectric composites with imperfectly bonded adherence

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, two-phase parallel fiber-reinforced periodic piezoelectric composites are considered wherein the constituents exhibit transverse isotropy and the cells have different configurations. Mechanical imperfect contact at the interface of the piezoelectric composites is studied via linear spring model. The statement of the problem for two-phase piezoelectric composites with mechanical imperfect contact is given. The local problems are formulated by means of the asymptotic homogenization method, and their solutions are found using complex variable theory. Analytical formulae are obtained for the effective properties of the composites with spring imperfect type of contact and different rhombic cells. Using the concept of a representative volume element (RVE), a finite element model is created, which combines the angular distribution of fibers and imperfect contact conditions (spring type) between the phases. Periodic boundary conditions are applied to the RVE, so that effective material properties can be derived. The fibers are distributed in such a way that the microstructure is characterized by a rhombic cell. The presented numerical homogenization technique is validated by comparing results with theoretical approach reported in the literature. Some studies of particular cases, numerical examples, and comparisons between the two aforementioned methods with other theoretical results illustrate that the model is efficient for the analysis of composites with presence of rhombic cells and the aforementioned imperfect contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chopra I.: Review of state of art of smart structures and integrated systems. AIAA J. 40(11), 2145–2187 (2002)

    Article  Google Scholar 

  2. Timoshenko S.: Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11, 233–255 (1925)

    Article  Google Scholar 

  3. Lighthill J., Bradshaw J.: Thermal stresses in turbine blades. Philos. Mag. 40, 770–780 (1949)

    MathSciNet  MATH  Google Scholar 

  4. Boley B.A., Weiner J.H.: Theory of Thermal Stresses. Dover, Mineola (1997)

    MATH  Google Scholar 

  5. Bickford W.B.: A consistent higher-order beam. Theory Dev. Theor. 11, 137–142 (1982)

    Google Scholar 

  6. Kant T., Manjunath B.S.: Refined theories for composite and sandwich beams with C0 finite elements. Comput. Struct. 33, 755–764 (1992)

    Article  Google Scholar 

  7. Soldatos K.P., Elishakoff I.: A transverse shear and normal deformable orthotropic beam theory. J. Sound Vib. 154, 528–533 (1992)

    Article  Google Scholar 

  8. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed. CRC Press, New York (2003)

    Google Scholar 

  9. Berdichevsky V.L.: Variational-asymptotic method of constructing a theory of shells. J. Appl. Math. Mech. 43, 664–687 (1979)

    Article  Google Scholar 

  10. Hodges D.H., Atilgan A.R., Cesnik C.E.S., Fulton M.V.: On a simplified strain energy function for geometrically nonlinear behavior of anisotropic beams. Compos. Eng. 2, 513–526 (1992)

    Article  Google Scholar 

  11. Cesnik C.E.S., Hodges D.H.: Stiffness constants for initially twisted and curved composite beams. Appl. Mech. Rev. 46, 211–220 (1993)

    Article  Google Scholar 

  12. Cesnik C.E.S., Hodges D.H.: Variational-asymptotic analysis of initially twisted and curved composite beams. Int. J. Des. Eng. 1, 177–187 (1994)

    Google Scholar 

  13. Popescu B., Hodges D.H.: On asymptotically correct Timoshenko-like anisotropic beam theory. Int. J. Solids Struct. 37, 535–558 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu W., Hodges D.H., Volovoi V., Cesnik C.E.S.: On Timoshenko-like modeling of initially curved and twisted composite beams. Int. J. Solids Struct. 39, 5101–5121 (2002)

    Article  MATH  Google Scholar 

  15. Maurini C., Pouget J., dell’Isola F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41(16–17), 4473–4502 (2004)

    Article  MATH  Google Scholar 

  16. Maurini C., Pouget J., dell’Isola F.: Extension of the Euler–Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22–23), 1438–1458 (2006)

    Article  Google Scholar 

  17. Feng X.-Q., Li Y., Cao Y.-P., Yu S.-W., Gu Y.-T.: Design methods of rhombic tensegrity structures. Acta Mech. Sin. 26, 559–565 (2010)

    Article  MATH  Google Scholar 

  18. Wegst U.G.K., Ashby M.F.: The mechanical efficiency of natural materials. Philos. Mag. 84(21), 2167–2186 (2004)

    Article  Google Scholar 

  19. Ingber D.E.: Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104, 613–627 (1993)

    Google Scholar 

  20. Ingber D.E.: Tensegrity: the architectural basis of cellular mechanotransduction. Ann. Rev. Physiol. 59, 575–599 (1997)

    Article  Google Scholar 

  21. Bravo-Castillero J., Guinovart Díaz R., Sabina F.J., Rodríguez Ramos R.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents-II. Piezoelectric and square symmetry. Mech. Mater. 33(4), 237–248 (2001)

    Article  Google Scholar 

  22. Sabina F.J., Rodríguez Ramos R., Bravo Castillero J., Guinovart Díaz R.: Closed-form expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents-II: Piezoelectric and hexagonal symmetry. J. Mech. Phys. Solids 49, 1463–1479 (2001)

    Article  MATH  Google Scholar 

  23. Berger H., Kari S., Gabbert U., Rodriguez-Ramos R., Bravo-Castillero J., Guinovart-Diaz R., Sabina F.J., Maugin G.A.: Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties. Smart Mater. Struct. 15, 451–458 (2006)

    Article  Google Scholar 

  24. Guinovart-Díaz R., López-Realpozo J.C., Rodríguez-Ramos R., Bravo-Castillero J., Ramírez M., Camacho-Montes H., Sabina F.J.: Influence of parallelogram cells in the axial behaviour of fibrous composite. Int. J. Eng. Sci. 49, 75–84 (2011)

    Article  Google Scholar 

  25. Guinovart-Díaz R., Yan P., Rodríguez-Ramos R., López-Realpozo J.C., Jiang C.P., Bravo-Castillero J., Sabina F.J.: Effective properties of piezoelectric composites with parallelogram periodic cells. Int. J. Eng. Sci. 53, 58–66 (2012)

    Article  Google Scholar 

  26. Andrianov I.V., Bolshakov V.I., Danishevs’kyy V.V., Weichert D.: Asymptotic study of imperfect interfaces in conduction through a granular composite material. Proc. R. Soc. A 466, 2707–2725 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Molkov V.A., Pobedria B.E.: Effective elastic properties of a composite with elastic contact. Izvestia Akademia Nauk SSR, Mekh. Tverdovo Tela 1, 111–117 (1988)

    Google Scholar 

  28. Shodja H.M., Tabatabaei S.M., Kamali M.T.: A piezoelectric medium containing a cylindrical inhomogeneity: role of electric capacitors and mechanical imperfections. Int. J. Solids Struct. 44, 6361–6381 (2007)

    Article  MATH  Google Scholar 

  29. Maugin G.A.: Continuum Mechanics of Electromagnetic Solids. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  30. Maugin G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)

    Book  MATH  Google Scholar 

  31. Telega, J.J.: Piezoelectric and homogenization. Application to biomechanics. In: Maugin, G.A. (ed.) Continuum Models and Discrete Systems. Logman, London 2:220–229 (1991)

  32. Turbe N., Maugin G.A.: On the linear piezoelectricity of composite materials. Math. Method Appl. Sci. 14, 403–412 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bensoussan A., Lions J.L., Papaicolaou G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  34. Sanchez-Palencia E.: Non Homogeneous Media and Vibration Theory Lectures Notes in Physics. Springer, Berlin (1980)

    Google Scholar 

  35. Pobedria B.E.: Mechanics of Composite Materials. Moscow State University Press, Moscow (in Russian) (1984)

    Google Scholar 

  36. Bakhvalov, N.S., Panasenko G.P.: Homogenization Averaging Processes in Periodic Media. Kluwer, Kluwer Academic Publishers (1989)

  37. Galka A., Telega J.J., Wojnar R.: Homogenization and thermopiezoelectricity. Mech. Res. Commun. 19, 315–324 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Galka A., Telega J.J., Wojnar R.: Some computational aspects of homogenization of thermopiezoelectric composites. Comput. Assist. Mech. Eng. Sci. 3, 133–154 (1996)

    Google Scholar 

  39. Bravo-Castillero J., Otero J.A., Rodriguez-Ramos R., Bourgeat A.: Asymptotic homogenization of laminated piezocomposite materials. Int. J. Solids Struct. 35(5–6), 527–541 (1998)

    Article  MathSciNet  Google Scholar 

  40. Lopez-Realpozo J.C., Rodriguez-Ramos R., Guinovart-Diaz R., Bravo-Castillero J., Sabina F.J.: Transport properties in fibrous elastic rhombic composite with imperfect contact condition. Int. J. Mech. Sci. 53, 98–107 (2011)

    Article  Google Scholar 

  41. Sevostianov I., Rodríguez-Ramos R., Guinovart-Díaz R., Bravo-Castillero J., Sabina F.J.: Connections between different models describing imperfect interfaces in periodic fiber-reinforced composites. Int. J. Solids Struc. 49, 1518–1525 (2012)

    Article  Google Scholar 

  42. Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift fur Angewandte Mathematik und Physik, pp. 1–26 (2013, in press). doi:10.1007/s00033-013-0347-8

  43. Berger H., Kari S., Gabbert U., Rodriguez-Ramos R., Rodriguez-Ramos R., Rodriguez-Ramos R., Rodriguez-Ramos R., Rodriguez-Ramos R.: Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties. J. Smart Mater. Struct. 15, 451–458 (2006)

    Article  Google Scholar 

  44. Berger H., Gabbert U., Köppe H., Rodriguez-Ramos R., Bravo-Castillero J., Guinovart-Diaz R., Otero J.A., Maugin G.A.: Finite element and asymptotic homogenization methods applied to smart composite materials. Comput. Mech. 33, 61–67 (2003)

    Article  MATH  Google Scholar 

  45. Rodríguez-Ramos R., Guinovart-Diaz R., López J.C., Bravo-Castillero J., Sabina F.J.: Influence of imperfect elastic contact condition on the antiplane effective properties of piezoelectric fibrous composites. Arch. Appl. Mech. 80, 377–388 (2010)

    Article  MATH  Google Scholar 

  46. Rodríguez-Ramos R., Guinovart-Díaz R., López-Realpozo J.C., Bravo-Castillero J., Otero J.A., Sabina F.J., Lebon F.: Analysis of fibrous electro-elastic composites with parallelogram cell and mechanic imperfect contact condition. Int. J. Mech. Sci. 73, 1–13 (2013)

    Article  Google Scholar 

  47. Royer, D., Dieulesaint, E.: Elastic Waves in Solids I. Springer, Berlin (2000)

  48. Hashin Z.: Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50, 2509–2537 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Würkner M., Berger H., Gabbert U.: On numerical evaluation of effective material properties for composite structures with rhombic fiber arrangement. Int. J. Eng. Sci. 49, 322–332 (2011)

    Article  MATH  Google Scholar 

  50. Würkner M., Berger H., Gabbert U.: Numerical study of effective elastic properties of fiber reinforced composites with rhombic cell arrangements and imperfect interface. Int. J. Eng. Sci. 63, 1–9 (2013)

    Article  Google Scholar 

  51. Pastor J.: Homogenization of linear piezoelectric media. Mech. Res. Commun. 24, 145–50 (1997)

  52. Hashin Z.: Analysis of properties of fibre composites with anisotropic constituents. J. Appl. Mech. 46, 543–550 (1979)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rodríguez-Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Ramos, R., Guinovart-Díaz, R., López-Realpozo, J.C. et al. Micromechanical analysis of fibrous piezoelectric composites with imperfectly bonded adherence. Arch Appl Mech 84, 1565–1582 (2014). https://doi.org/10.1007/s00419-014-0856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0856-8

Keywords

Navigation