Skip to main content
Log in

Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Endogenous cell autofluorescence is a common nuisance that complicates the use of fluorescence microscopy. When using fluorescence-labeled antibodies for specific cell labeling in tissue sections of human angioimmunoblastic T-cell lymphoma (AITL), we encountered with a problematic autofluorescence of multiple cells. These cells emitted fluorescence signals in the green, red and deep-red spectral range. Characterization of these autofluorescent cells solely on the basis of their autofluorescence failed. To identify these enigmatic cells residing the lymphoma tissue, we combined two imaging techniques—fluorescence and brightfield microscopy. Combined fluorescence/brightfield imaging of cells immunolabeled with a panel of CD antibodies raised against diverse cellular components allowed us to identify the autofluorescent cells in the AITL as eosinophils. These cells tended to accumulate in the vicinity of capillaries and arterioles apparently mediating the process of angiogenesis resembling other angiogenesis-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acharya KR, Ackerman SJ (2014) Eosinophil granule proteins: form and function. J Biol Chem 289:17406–17415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen CL, Siersma VD, Hasselbalch HC, Vestergaard H, Mesa R, Felding P, Olivarius ND, Bjerrum OW (2015) Association of the blood eosinophil count with hematological malignancies and mortality. Am J Hematol 90:225–229

    Article  CAS  PubMed  Google Scholar 

  • Attygalle A, Al-Jehani R, Diss TC, Munson P, Liu H, Du MQ, Isaacson PG, Dogan A (2002) Neoplastic T cells in angioimmunoblastic T-cell lymphoma express CD10. Blood 99:627–633

    Article  CAS  PubMed  Google Scholar 

  • Barnes D, Aggarwal S, Thomsen S, Fitzmaurice M, Richards-Kortum R (1993) A characterization of the fluorescent properties of circulating human eosinophils. Photochem Photobiol 58:297–303

    Article  CAS  PubMed  Google Scholar 

  • Beisker W, Dolbeare F, Gray JW (1987) An improved immunocytochemical procedure for high-sensitivity detection of incorporated bromodeoxyuridine. Cytometry 8:235–239

    Article  CAS  PubMed  Google Scholar 

  • Billinton N, Knight AW (2001) Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem 291:175–197

    Article  CAS  PubMed  Google Scholar 

  • Bocker W, Moll R, Poremba C, Holland R, Van Diest PJ, Dervan P, Burger H, Wai D, Ina Diallo R, Brandt B, Herbst H, Schmidt A, Lerch MM, Buchwallow IB (2002) Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Invest 82:737–746

    Article  PubMed  Google Scholar 

  • Boecker W, Moll R, Dervan P, Buerger H, Poremba C, Diallo RI, Herbst H, Schmidt A, Lerch MM, Buchwalow IB (2002) Usual ductal hyperplasia of the breast is a committed stem (progenitor) cell lesion distinct from atypical ductal hyperplasia and ductal carcinoma in situ. J Pathol 198:458–467

    Article  PubMed  Google Scholar 

  • Boecker W, Junkers T, Reusch M, Buerger H, Korsching E, Metze D, Decker T, Loening T, Lange A, Samoilova V, Buchwalow I (2012) Origin and differentiation of breast nipple syringoma. Sci Rep 2:226

    Article  PubMed  PubMed Central  Google Scholar 

  • Boecker W, Stenman G, Loening T, Andersson MK, Bankfalvi A, von Holstein S, Heegaard S, Lange A, Berg T, Samoilova V, Tiemann K, Buchwalow I (2013) K5/K14-positive cells contribute to salivary gland-like breast tumors with myoepithelial differentiation. Mod Pathol 26:1086–1100

    Article  CAS  PubMed  Google Scholar 

  • Boecker W, Stenman G, Loening T, Andersson MK, Sinn HP, Barth P, Oberhellmann F, Bos I, Berg T, Marusic Z, Samoilova V, Buchwalow I (2014) Differentiation and histogenesis of syringomatous tumour of the nipple and low-grade adenosquamous carcinoma: evidence for a common origin. Histopathology 65:9–23

    Article  PubMed  Google Scholar 

  • Boecker W, Stenman G, Loening T, Andersson MK, Berg T, Lange A, Bankfalvi A, Samoilova V, Tiemann K, Buchwalow I (2015) Squamous/epidermoid differentiation in normal breast and salivary gland tissues and their corresponding tumors originate from p63/K5/14-positive progenitor cells. Virchows Arch 466:21–36

    Article  CAS  PubMed  Google Scholar 

  • Boecker W, Stenman G, Schroeder T, Schumacher U, Loening T, Stahnke L, Lohnert C, Siering RM, Kuper A, Samoilova V, Tiemann M, Korsching E, Buchwalow I (2017) Multicolor immunofluorescence reveals that p63- and/or K5-positive progenitor cells contribute to normal breast epithelium and usual ductal hyperplasia but not to low-grade intraepithelial neoplasia of the breast. Virchows Arch 470:493–504

    Article  CAS  PubMed  Google Scholar 

  • Buchwalow IB, Boecker W (2010) Immunohistochemistry: Basics and Methods. Springer, Heidelberg

    Book  Google Scholar 

  • Buchwalow I, Samoilova V, Boecker W, Tiemann M (2011) Non-specific binding of antibodies in immunohistochemistry: fallacies and facts. Sci Rep 1:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchwalow I, Boecker W, Wolf E, Samoilova V, Tiemann M (2013) Signal amplification in immunohistochemistry: loose-jointed deformable heteropolymeric HRP conjugates vs. linear polymer backbone HRP conjugates. Acta Histochem 115:587–594

    Article  CAS  PubMed  Google Scholar 

  • De Veld DC, Witjes MJ, Sterenborg HJ, Roodenburg JL (2005) The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol 41:117–131

    Article  PubMed  Google Scholar 

  • Ethier C, Lacy P, Davoine F (2014) Identification of human eosinophils in whole blood by flow cytometry. Methods Mol Biol 1178:81–92

    Article  PubMed  Google Scholar 

  • Falchi L, Verstovsek S (2015) Eosinophilia in hematologic disorders. Immunol Allergy Clin North Am 35:439–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaulard P, de Leval L (2014) The microenvironment in T-cell lymphomas: emerging themes. Semin Cancer Biol 24:49–60

    Article  CAS  PubMed  Google Scholar 

  • Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39:177–253

    Article  CAS  PubMed  Google Scholar 

  • Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J (2000) Lymphoma classification—from controversy to consensus: the R.E.A.L. and WHO Classification of lymphoid neoplasms. Ann Oncol 11(Suppl 1):3–10

    Article  PubMed  Google Scholar 

  • Hayden P, O’Connell N, O’Brien D, O’Rourke P, Lawlor E, Browne P (2006) The value of autofluorescence as a diagnostic feature of acute promyelocytic leukemia. Haematologica 91:417–418

    PubMed  Google Scholar 

  • Heintzelman DL, Lotan R, Richards-Kortum RR (2000a) Characterization of the autofluorescence of polymorphonuclear leukocytes, mononuclear leukocytes and cervical epithelial cancer cells for improved spectroscopic discrimination of inflammation from dysplasia. Photochem Photobiol 71:327–332

    Article  CAS  PubMed  Google Scholar 

  • Heintzelman DL, Utzinger U, Fuchs H, Zuluaga A, Gossage K, Gillenwater AM, Jacob R, Kemp B, Richards-Kortum RR (2000b) Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem Photobiol 72:103–113

    Article  CAS  PubMed  Google Scholar 

  • Inhorn RC, Aster JC, Roach SA, Slapak CA, Soiffer R, Tantravahi R, Stone RM (1995) A syndrome of lymphoblastic lymphoma, eosinophilia, and myeloid hyperplasia/malignancy associated with t(8;13)(p11;q11): description of a distinctive clinicopathologic entity. Blood 85:1881–1887

    CAS  PubMed  Google Scholar 

  • Koenig K, Schneckenburger H (1994) Laser-induced autofluorescence for medical diagnosis. J Fluoresc 4:17–40

    Article  CAS  PubMed  Google Scholar 

  • Lacy P, Rosenberg HF, Walsh GM (2014) Eosinophil overview: structure, biological properties, and key functions. Methods Mol Biol 1178:1–12

    Article  PubMed  Google Scholar 

  • Lojda Z, Gossrau R, Schiebler T (1976) Enzyme histochemistry. a laboratory manual. Springer, Berlin

    Google Scholar 

  • Mayeno AN, Hamann KJ, Gleich GJ (1992) Granule-associated flavin adenine dinucleotide (FAD) is responsible for eosinophil autofluorescence. J Leukoc Biol 51:172–175

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Lorenzo I, Dorado J, Lonardo E, Alcala S, Serrano AG, Clausell-Tormos J, Cioffi M, Megias D, Zagorac S, Balic A, Hidalgo M, Erkan M, Kleeff J, Scarpa A, Sainz B Jr, Heeschen C (2014) Intracellular autofluorescence: a biomarker for epithelial cancer stem cells. Nat Meth 11:1161–1169

    Article  CAS  Google Scholar 

  • Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256

    Article  CAS  PubMed  Google Scholar 

  • Monici M, Agati G, Fusi F, Pratesi R, Paglierani M, Santini V, Bernabei PA (2003) Dependence of leukemic cell autofluorescence patterns on the degree of differentiation. Photochem Photobiol Sci 2:981–987

    Article  CAS  PubMed  Google Scholar 

  • Monsel A, Lecart S, Roquilly A, Broquet A, Jacqueline C, Mirault T, Troude T, Fontaine-Aupart MP, Asehnoune K (2014) Analysis of autofluorescence in polymorphonuclear neutrophils: a new tool for early infection diagnosis. PLoS One 9:e92564

    Article  PubMed  PubMed Central  Google Scholar 

  • Nissim Ben Efraim AH, Levi-Schaffer F (2008) Tissue remodeling and angiogenesis in asthma: the role of the eosinophil. Ther Adv Respir Dis 2:163–171

    Article  CAS  PubMed  Google Scholar 

  • Oliveira VC, Carrara RC, Simoes DL, Saggioro FP, Carlotti CG Jr, Covas DT, Neder L (2010) Sudan Black B treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections. Histol Histopathol 25:1017–1024

    CAS  PubMed  Google Scholar 

  • Pardanani A, Ketterling RP, Brockman SR, Flynn HC, Paternoster SF, Shearer BM, Reeder TL, Li CY, Cross NC, Cools J, Gilliland DG, Dewald GW, Tefferi A (2003) CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood 102:3093–3096

    Article  CAS  PubMed  Google Scholar 

  • Puxeddu I, Alian A, Piliponsky AM, Ribatti D, Panet A, Levi-Schaffer F (2005a) Human peripheral blood eosinophils induce angiogenesis. Int J Biochem Cell Biol 37:628–636

    Article  CAS  PubMed  Google Scholar 

  • Puxeddu I, Ribatti D, Crivellato E, Levi-Schaffer F (2005b) Mast cells and eosinophils: a novel link between inflammation and angiogenesis in allergic diseases. J Allergy Clin Immunol 116:531–536

    Article  CAS  PubMed  Google Scholar 

  • Romeis B (2010) Mikroskopische Technik. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Samoszuk MK, Espinoza FP (1987) Deposition of autofluorescent eosinophil granules in pathologic bone marrow biopsies. Blood 70:597–599

    CAS  PubMed  Google Scholar 

  • Stolwijk TR, van Best JA, Oosterhuis JA, Swart W (1992) Corneal autofluorescence: an indicator of diabetic retinopathy. Invest Ophthalmol Vis Sci 33:92–97

    CAS  PubMed  Google Scholar 

  • Vardiman JW (2010) The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms. Chem Biol Interact 184:16–20

    Article  CAS  PubMed  Google Scholar 

  • Weil GJ, Chused TM (1981) Eosinophil autofluorescence and its use in isolation and analysis of human eosinophils using flow microfluorometry. Blood 57:1099–1104

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Denis Morozow and Alexander Glomb for perfect technical assistance and other colleagues from the immunohistology laboratory for sharing probes and reagents. The Axio Vision software setup for the automatic measurement program and for the multichannel acquisition of fluorescent and transmitted light images was kindly supported by Volker Hagen (m-imaging Solutions, Hamburg, Germany).

Author information

Authors and Affiliations

Authors

Contributions

IB and MT designed the study, VS and DA performed experiments, IB wrote the manuscript, WB and MT supervised the study.

Corresponding author

Correspondence to Igor Buchwalow.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchwalow, I., Atiakshin, D., Samoilova, V. et al. Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma. Histochem Cell Biol 149, 169–177 (2018). https://doi.org/10.1007/s00418-017-1624-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-017-1624-y

Keywords

Navigation