Skip to main content
Log in

Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMs) in diabetic mice after prolonged high-fat diet

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Intercellular junctions play a role in regulating islet cytoarchitecture, insulin biosynthesis and secretion. In this study, we investigated the animal metabolic state as well as islet histology and cellular distribution/expression of CAMs and F-actin in the endocrine pancreas of C57BL/6/JUnib mice fed a high-fat diet (HFd) for a prolonged time period (8 months). Mice fed a HFd became obese and type 2 diabetic, displaying significant peripheral insulin resistance, hyperglycemia and moderate hyperinsulinemia. Isolated islets of HFd-fed mice displayed a significant impairment of glucose-induced insulin secretion associated with a diminished frequency of intracellular calcium oscillations compared with control islets. No marked change in islet morphology and cytoarchitecture was observed; however, HFd-fed mice showed higher beta cell relative area in comparison with controls. As shown by immunohistochemistry, ZO-1, E-, N-cadherins, α- and β-catenins were expressed at the intercellular contact site of endocrine cells, while VE-cadherin, as well as ZO-1, was found at islet vascular compartment. Redistribution of N-, E-cadherins and α-catenin (from the contact region to the cytoplasm in endocrine cells) associated with increased submembranous F-actin cell level as well as increased VE-cadherin islet immunolabeling was observed in diabetic mice. Increased gene expression of VE-cadherin and ZO-1, but no change for the other proteins, was observed in islets of diabetic mice. Only in the case of VE-cadherin, a significant increase in islet content of this CAM was detected by immunoblotting in diabetic mice. In conclusion, CAMs are expressed by endocrine and endothelial cells of pancreatic islets. The distribution/expression of N-, E- and VE-cadherins as well as α-catenin and F-actin is significantly altered in islet cells of obese and diabetic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aberle H, Schwartz H, Kemler R (1996) Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 61(4):514–523

    Article  CAS  PubMed  Google Scholar 

  • Agudo J, Ayuso E, Jimenez V, Casellas A, Mallol C, Salavert A, Bosch F (2012) Vascular endothelial growth factor-mediated islet hypervascularization and inflammation contribute to progressive reduction of β-cell mass. Diabetes 61(11):2851–2861. doi:10.2337/db12-0134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahrén B, Pacini G (2002) Insufficient islet compensation to insulin resistance versus reduced glucose effectiveness in glucose-intolerant mice. Am J Physiol Endocrinol Metab 283(4):E738–E744

    Article  PubMed  Google Scholar 

  • Ahrens T, Lambert M, Pertz O, Sasaki T, Schulthess T, Mège RM, Timpl R, Engel J (2003) Homoassociation of VE-cadherin follows a mechanism common to “classical” cadherins. J Mol Biol 325(4):733–742

    Article  CAS  PubMed  Google Scholar 

  • Andralojc KM, Mercalli A, Nowak KW, Albarello L, Calcagno R, Luzi L, Bonifacio E, Doglioni C, Piemonti L (2009) Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia 52:486–493. doi:10.1007/s00125-008-1238-y

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic β-cell. Prog Biophys Mol Biol 54:87–143

    Article  CAS  PubMed  Google Scholar 

  • Benmerah A, Scott M, Poupon V, Marullo S (2003) Nuclear functions for plasma membrane associated proteins? Traffic 4:503–511

    Article  CAS  PubMed  Google Scholar 

  • Bergsten P (2000) Pathophysiology of impaired pulsatile insulin release. Diabetes Metab Res Rev 16:179–191

    Article  CAS  PubMed  Google Scholar 

  • Bosco D, Rouiller DG, Halban PA (2007) Differential expression of E-cadherin at the surface of rat beta-cells as a marker of functional heterogeneity. J Endocrinol 194(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Breier G, Breviario F, Caveda L, Berthier R, Schnurch H, Gotsch U, Vestweber D, Risau W, Dejana E (1996) Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 87:630–641

    CAS  PubMed  Google Scholar 

  • Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53(9):1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110

    Article  CAS  PubMed  Google Scholar 

  • Calabrese A, Caton D, Meda P (2004) Differentiating the effects of Cx36 and E-cadherin for proper insulin secretion of MIN6 cells. Exp Cell Res 294:379–391

    Article  CAS  PubMed  Google Scholar 

  • Cannito S, Novo E, Bonzo LV, Busletta C, Colombatto S, Parola M (2010) Epithelial–mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 12(12):1383–1430. doi:10.1089/ars.2009.2737

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CPF, Martins JC, Da Cunha DA, Boschero AC, Collares-Buzato CB (2006) Histomorphology and ultrastructure of pancreatic islet tissue during in vivo maturation of rat pancreas. Ann Anat 188:221–234

    Article  PubMed  Google Scholar 

  • Carvalho CPF, Barbosa HC, Britan A, Santos-Silva JC, Boschero AC, Meda P, Collares-Buzato CB (2010) Beta cell coupling and connexin expression change during the functional maturation of rat pancreatic islets. Diabetologia 53(7):1428–1437. doi:10.1007/s00125-010-1726-8

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CP, Oliveira RB, Britan A, Santos-Silva JC, Boschero AC, Meda P, Collares-Buzato CB (2012) Impaired β-cell-β-cell coupling mediated by Cx36 gap junctions in prediabetic mice. Am J Physiol Endocrinol Metab 303:144–145. doi:10.1152/ajpendo.00489.2011

    Article  Google Scholar 

  • Carvell MJ, Marsh PJ, Persaud SJ, Jones PM (2007) E-cadherin interactions regulate beta-cell proliferation in islet-like structures. Cell Physiol Biochem 20(5):617–626

    Article  CAS  PubMed  Google Scholar 

  • Chang-Chen KJ, Mullur R, Bernal-Mizrachi E (2008) Beta-cell failure as a complication of diabetes. Rev Endocr Metab Disord 9(4):329–343. doi:10.1007/s11154-008-9101-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collares-Buzato CB, Jepson MA, Simmons NL, Hirst BH (1998) Increased tyrosine phosphorylation causes redistribution of adherens junction and tight junction proteins and perturbs paracellular barrier function in MDCK epithelia. Eur J Cell Biol 76:85–92

    Article  CAS  PubMed  Google Scholar 

  • Collares-Buzato CB, Carvalho CPF, Furtado AG, Boschero AC (2004) Upregulation of the expression of tight and adherens junction-associated proteins during maturation of neonatal pancreatic islets in vitro. J Mol Histol 35:811–822

    Article  CAS  PubMed  Google Scholar 

  • Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A (2002) The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 109:987–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coronel-Cruz C, Hernández-Tellez B, López-Vancell R, López-Vidal Y, Berumen J et al (2013) Connexin 30.2 is expressed in mouse pancreatic beta cells. Biochem Biophys Res Commun 438(4):772–777. doi:10.1016/j.bbrc.2013.06.100

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Brissov M, Reinert RB, Nyman L, Liu EH, Thompson C, Powers AC (2013) Pancreatic islet vasculature adapts to insulin resistance through dilation and not angiogenesis. Diabetes 62(12):4144–4153. doi:10.2337/db12-1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejana E, Spagnuolo R, Bazzoni G (2001) Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb Haemost 86:308–315

    CAS  PubMed  Google Scholar 

  • Drolet MC, Roussel E, Deshaies Y, Couet J, Arsenault M (2006) A high fat/high carbohydrate diet induces aortic valve disease in C57BL/6 J mice. J Am Coll Cardiol 47(4):850–855

    Article  CAS  PubMed  Google Scholar 

  • Duvillie B, Currie C, Chrones T, Bucchini D, Jami J, Joshi RL, Hill DJ (2002) Increased islet cell proliferation, decreased apoptosis, and greater vascularization leading to beta-cell hyperplasia in mutant mice lacking insulin. Endocrinology 143:1530–1537

    CAS  PubMed  Google Scholar 

  • Ebnet K (2008) Organization of multiprotein complexes at cell-cell junction. Histochem Cell Biol 130:1–20. doi:10.1007/s00418-008-0418-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esni F, Täljedal IB, Perl AK, Cremer H, Christofori G, Semb H (1999) Neural cell adhesion molecule (N-CAM) is required for cell type segregation and normal ultrastructure in pancreatic islets. J Cell Biol 144(2):325–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figeac FBU, Faro M, Chelali N, Portha B, Movassat J (2009) Neonatal growth and regeneration of β-cells are regulated by the Wnt/β-catenin signaling in normal and diabetic rats. Am J Physiol Endocrinol Metab 298:245–256. doi:10.1152/ajpendo.00538.2009

    Article  Google Scholar 

  • Gilon P, Shepherd RM, Henquin JC (1993) Oscillations of secretion driven by oscillations of cytoplasmic Ca2+ as evidenced in single pancreatic islets. J Biol Chem 268:22265–22268

    CAS  PubMed  Google Scholar 

  • Gomez-Dumm CL, Semino MC, Gagliardino JJ (1990) Sequential morphological changes in pancreatic islets of spontaneously diabetic rats. Pancreas 5(5):533–539

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Pérez Y, Amengual-Cladera E, Català-Niell A, Thomàs-Moyà E, Gianotti M, Proenza AM, Lladó I (2008) Gender dimorphism in high fat diet-induced insulin resistance in skeletal muscle of aged rats. Cell Physiol Biochem 22:539–548

    Article  PubMed  Google Scholar 

  • Green AD, Vasu S, McClenaghan NH, Flatt PR (2015) Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells. Pflugers Arch 467(10):2219–2228. doi:10.1007/s00424-014-1681-1

    Article  CAS  PubMed  Google Scholar 

  • Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11(7):502–514. doi:10.1038/nrm2927

    Article  CAS  PubMed  Google Scholar 

  • Hauge-Evans AC, Squires PE, Persaud SJ, Jones PM (1999) Pancreatic beta-cell-to-beta-cell interactions are required for integrated responses to nutrient stimuli: enhanced Ca2+ and insulin secretory responses of MIN6 pseudoislets. Diabetes 48(7):1402–1408

    Article  CAS  PubMed  Google Scholar 

  • Henningsson R, Salehi A, Lundquist I (2002) Role of nitric oxide synthase isoforms in glucose-stimulated insulin release. Am J Physiol Cell Physiol 283:296–304

    Article  Google Scholar 

  • Herrera PL (2009) Transgenic and other experimental models of pancreas and islet damage. Diabetes Obes Metab 11(4):81–86. doi:10.1111/j.1463-1326.2009.01104.x

    Google Scholar 

  • Hoetelmans RW, Prins FA, Cornelese-ten Velde I, van der Meer J, van de Velde CJ, van Dierendonck JH (2001) Effects of acetone, methanol, or paraformaldehyde on cellular structure, visualized by reflection contrast microscopy and transmission and scanning electron microscopy. Appl Immunohistochem Mol Morphol 9:346–351

    CAS  PubMed  Google Scholar 

  • Jain R, Lammert E (2009) Cell–cell interactions in the endocrine pancreas. Diabetes Obes Metab 11(Suppl. 4):159–167. doi:10.1111/j.1463-1326.2009.01102.x

    Article  CAS  PubMed  Google Scholar 

  • Johansson JK, Voss U, Kesavan G, Kostetskii I, Wierup N, Radice GL, Semb H (2010) N-cadherin is dispensable for pancreas development but required for beta-cell granule turnover. Genesis 48(6):374–381. doi:10.1002/dvg.20628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R, Weir GC (1999) Chronic hyperglycemia triggers loss of pancreatic cell differentiation in an animal model of diabetes. J Biol Chem 274(20):14112–14121

    Article  CAS  PubMed  Google Scholar 

  • Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 14:840–846

    Article  Google Scholar 

  • Kai AKL, Lam AKM, Chen Y, Tai ACP, Zhang X, Lai AKW, Yeung PKK, Tam S, Wang J, Lam KS, Vanhoutte PM, Bos JL, Chung SSM, Xu A, Chung SK (2013) Exchange protein activated by cAMP 1 (Epac1)-deficient mice develop β-cell dysfunction and metabolic syndrome. FASEB J 27:4122–4135

    Article  CAS  PubMed  Google Scholar 

  • Kilimnik G, Zhao B, Jo J, Periwal V, Witkowski P, Misawa R, Hara M (2011) Altered islet composition and disproportionate loss of large islets in patients with type 2 diabetes. PLoS One 6(11):e27445. doi:10.1371/journal.pone.0027445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M (2009) Islet architecture: a comparative study. Islets 1(2):129–136. doi:10.4161/isl.1.2.9480

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawler K, O’Sullivan G, Long A, Kenny D (2009) Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci 100:1082–1087

    Article  CAS  PubMed  Google Scholar 

  • Leite AR, Carvalho CP, Furtado AG, Barbosa HC, Boschero AC, Collares-Buzato CB (2005) Co-expression and regulation of connexins 36 and 43 in cultured neonatal rat pancreatic islets. Can J Physiol Pharmacol 83:142–151

    Article  CAS  PubMed  Google Scholar 

  • Lewis JE, Wah JK 3rd, Sass KM, Jensen PJ, Johnson KR, Wheelock MJ (1997) Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J Cell Biol 136(4):919–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Luebke-Wheeler JL, Nedredal G, Yee L, Amiot BP, Nyberg SL (2009) E-cadherin protects primary hepatocyte spheroids from cell death by a caspase-independent mechanism. Cell Transplant 18(12):1281–1287. doi:10.3727/096368909X474258

    Article  PubMed  PubMed Central  Google Scholar 

  • Luther MJ, Davies E, Muller D, Harrison M, Bone AJ, Persaud SJ, Jones PM (2005) Cell-to-cell contact influences proliferative marker expression and apoptosis in MIN6 cells grown in islet-like structures. Am J Physiol Endocrinol Metab 288(3):E502–E509

    Article  CAS  PubMed  Google Scholar 

  • Meda P (2013) Protein-mediated interactions of pancreatic islet cells. Scientifica 2013:621249. doi:10.1155/2013/621249

    Article  PubMed  PubMed Central  Google Scholar 

  • Mese G, Richard G, White TW (2007) Gap junctions: basic structure and functions. J Invest Dermatol 127(11):2516–2524

    Article  CAS  PubMed  Google Scholar 

  • Miravet S, Piedra J, Castaño J, Raurell I, Francí C, Duñach M, García de Herreros A (2003) Tyrosine phosphorylation of plakoglobin causes contrary effects on its association with desmosomes and adherens junction components and modulates beta-catenin-mediated transcription. Mol Cell Biol 23(20):7391–7402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murtaugh LC (2008) The what, where, when and how of Wnt/beta-catenin signaling in pancreas development. Organogenesis 4(2):81–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngamjariyawat A, Turpaev K, Vasylovska S, Kozlova EN, Welsh N (2013) Co-culture of neural crest stem cells (NCSC) and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death. PLoS One 8(4):e61828. doi:10.1371/journal.pone.0061828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nlend RN, Michon L, Bavamian S, Boucard N, Caille D, Cancela J, Charollais A, Charpantier E, Klee P, Peyrou M, Populaire C, Zulianello L, Meda P (2006) Connexin36 and pancreatic beta cell functions. Arch Physiol Biochem 112:74–81

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RB, Maschio DA, Carvalho CPF, Collares-Buzato CB (2015) Influence of gender and time diet exposure on endocrine pancreas remodeling in response to high fat diet-induced metabolic disturbances in mice. Ann Anat 200:88–97. doi:10.1016/j.aanat.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  • Orci L (1976) The microanatomy of the islets of Langerhans. Metabolism 25:1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Parnaud G, Gonelle-Gispert C, Morel P, Giovannoni L, Muller YD, Meier R, Borot S, Berney T, Bosco D (2011) Cadherin engagement protects human beta-cells from apoptosis. Endocrinology 152(12):4601–4609. doi:10.1210/en.2011-1286

    Article  CAS  PubMed  Google Scholar 

  • Parnaud G, Lavallard V, Bedat B, Matthey-Doret D, Morel P, Berney T, Bosco D (2015) Cadherin engagement improves insulin secretion of single human β-cells. Diabetes 64:887–896. doi:10.2337/db14-0257

    Article  CAS  PubMed  Google Scholar 

  • Perez-Moreno M, Jamora C, Fuchs E (2003) Sticky business: orchestrating cellular signals at adherens junctions. Cell 112(4):535–548

    Article  CAS  PubMed  Google Scholar 

  • Peyot M-L, Pepin E, Lamontagne J, Latour MG, Zarrouki B, Lussier R, Pineda M, Jetton TL, Madiraju MSR, Joly E, Prentki M (2010) B-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 59:2178–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116:1802–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66

    Article  CAS  PubMed  Google Scholar 

  • Ravier MA, Sehlin J, Henquin JC (2002) Disorganization of cytoplasmic Ca(2+) oscillations and pulsatile insulin secretion in islets from ob/ob mice. Diabetologia 45(8):1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Rieck S, White P, Schug J, Fox AJ, Smirnova O, Gao N, Kaestner KH (2009) The transcriptional response of the islet to pregnancy in mice. Mol Endocrinol 23(10):1702–1712. doi:10.1210/me.2009-0144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers GJ, Hodgkin MN, Squires PE (2007) E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet. Cell Physiol Biochem 20(6):987–994

    Article  CAS  PubMed  Google Scholar 

  • Rossmeisl M, Rim JS, Koza RA, Kozak LP (2003) Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes 52:1958–1966

    Article  CAS  PubMed  Google Scholar 

  • Sandu O, Song K, Cai W, Zheng F, Uribarri J, Vlassara H (2005) Insulin resistance and type 2 diabetes in high-fat–fed mice are linked to high glycotoxin intake. Diabetes 54:2314–2319

    Article  CAS  PubMed  Google Scholar 

  • Santos-Silva JC, Carvalho CP, de Oliveira RB, Boschero AC, Collares-Buzato CB (2012) Cell-to-cell contact dependence and junctional protein content are correlated with in vivo maturation of pancreatic beta cells. Can J Physiol Pharmacol 90:837–850. doi:10.1139/y2012-064

    Article  CAS  PubMed  Google Scholar 

  • Shafrir E, Ziv E, Mosthaf L (1999) Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann N Y Acad Sci 892:223–246

    Article  CAS  PubMed  Google Scholar 

  • Shim Y, Nam MH, Hyuk SW, Yoon SY, Song JM (2015) Concurrent hypermulticolor monitoring of CD31, CD34, CD45 and CD146 endothelial progenitor cell markers for acute myocardial infarction. Anal Chim Acta 853:501–507. doi:10.1016/j.aca.2014.10.036

    Article  CAS  PubMed  Google Scholar 

  • Shirakawa J, Amo K, Ohminami H, Orime K, Togashi Y, Ito Y, Terauchi Y (2011) Protective effects of dipeptidyl peptidase-4 (DPP-4) inhibitor against increased β cell apoptosis induced by dietary sucrose and linoleic acid in mice with diabetes. J Biol Chem 286(29):25467–25476. doi:10.1074/jbc.M110.217216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Lei P, Andreadis ST (2009) PKC-delta binds to E-cadherin and mediates EGF-induced cell scattering. Exp Cell Res 315:2899–2913. doi:10.1016/j.yexcr.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  • Sone H, Kagawa Y (2005) Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48:58–67

    Article  CAS  PubMed  Google Scholar 

  • Spadaro D, Tapia R, Pulimeno P, Citi S (2012) The control of gene expression and cell proliferation by the epithelial apical junctional complex. Essays Biochem 53:83–93. doi:10.1042/bse0530083

    Article  CAS  PubMed  Google Scholar 

  • Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6 J mice. Diabetes 37(9):1163–1167

    Article  CAS  PubMed  Google Scholar 

  • Tripathy D, Chavez AO (2010) Defects in insulin secretion and action in the pathogenesis of type 2 diabetes mellitus. Curr Diab Rep 10(3):184–191. doi:10.1007/s11892-010-0115-5

    Article  CAS  PubMed  Google Scholar 

  • Wakae-Takada N, Xuan S, Watanabe K, Meda P, Leib RL (2013) Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin. Diabetologia 56(4):856–866. doi:10.1007/s00125-012-2824-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winzell MS, Ahrén B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(suppl 3):215–219

    Article  Google Scholar 

  • Winzell MS, Holm C, Ahrén B (2003) Downregulation of islet hormone-sensitive lipase during long-term high-fat feeding. Biochem Biophys Res Commun 304:273–278

    Article  PubMed  Google Scholar 

  • Yamagata K, Nammo T, Moriwaki M, Ihara A, Iizuka K, Yang Q, Satoh T, Li M, Uenaka R, Okita K, Iwahashi H, Zhu Q, Cao Y, Imagawa A, Tochino Y, Hanafusa T, Miyagawa J, Matsuzawa Y (2002) Overexpression of dominant-negative mutant hepatocyte nuclear factor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. Diabetes 51(1):114–123

    Article  CAS  PubMed  Google Scholar 

  • Yin T, Green KJ (2004) Regulation of desmosome assembly and adhesion. Semin Cell Dev Biol 15(6):665–677

    Article  CAS  PubMed  Google Scholar 

  • Zanone MM, Favaro E, Camussi G (2008) From endothelial to beta cells: insights into pancreatic islet microendothelium. Curr Diabetes Rev 4(1):1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Célia Garcia for technical assistance, Luiza Martinez Perdigueiro for helping with morphometric analysis, and Profs. Antonio Carlos Boschero and Everardo Carneiro for the use of their laboratory facilities for RIE and intracellular calcium measurements. We thank the staff of the Hemocentro (Medical School) and Life Sciences Core Facility (LaCTAD) from University of Campinas (UNICAMP) for helping with confocal microscopy imaging. The confocal scanning laser microscopes used were acquired under the Grants # 2000/05137-4 and 2009/54129-9. This work was funded by grants from FAPESP (Grant # 2010/50789-1), CNPq, FAEPEX/UNICAMP and CAPES/PROEX (Brazil). VTFLF was recipient of a PhD CAPES-DINTER fellowship (Brazil). CBC-B are supported by a Research Fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil, Grants # 307163/2012-1; 304991/2015-5). This work has been presented at the 2014 Annual ASCB/IFCB Meeting and partially published in abstract form (Mol Biol Cel 25, 448 (Abstract # P591).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Beatriz Collares-Buzato.

Additional information

Viviane Tannuri F. L. Falcão and Daniela A. Maschio have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcão, V.T.F.L., Maschio, D.A., de Fontes, C.C. et al. Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMs) in diabetic mice after prolonged high-fat diet. Histochem Cell Biol 146, 13–31 (2016). https://doi.org/10.1007/s00418-016-1428-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1428-5

Keywords

Navigation