Skip to main content
Log in

The expression of PLP/DM-20 mRNA is restricted to the oligodendrocyte-lineage cells in the adult rat spinal cord

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Proteolipid protein (PLP) is the major component of myelin; its gene encodes two major splicing variants: PLP and DM-20. Compared with PLP, DM-20 lacks the amino acids encoded by exon IIIb. The expression of PLP/DM-20 in cells outside the oligodendrocyte-lineage is unclear. To address this issue, we analyzed the detailed expression pattern of PLP/DM-20 mRNA in the adult rat spinal cord by in situ hybridization (ISH) with a cRNA probe complementary to DM-20 mRNA, which has been used to detect both PLP and DM-20 both mRNA. ISH did not label the cells expressing NeuN nor glial fibrillary acidic protein but detected those expressing Olig2, indicating that PLP/DM-20 mRNA are expressed only in oligodendrocyte-lineage cells. This cell population was expected to contain NG2-expressing oligodendrocyte precursor cells (OPCs), because some exhibited the expression of glutathione S-transferase pi isoform in the nucleus. A recent publication showed that OPCs express PLP but not DM-20 mRNA. However, no OPCs were detected. We performed ISH with a cRNA probe that specifically recognizes PLP mRNA to successfully detect some OPCs. Additionally, OPCs were detected by ISH with a cRNA probe complementary to DM-20 mRNA that was digested via alkaline hydrolysis prior to ISH. These findings collectively demonstrate that PLP and DM-20 mRNA expression is restricted to oligodendrocyte-lineage cells, and imply that the undigested cRNA probe complementary to the full-length DM-20 mRNA sequence only recognizes DM-20 mRNA and not the PLP counterpart when applied to ISH without denaturation/digestion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AH:

Anterior horn

ALP:

Alkaline phosphatase

BSA:

Bovine serum albumin

CF:

Cuneate funiculus

CNS:

Central nervous system

cRNA:

Complementary RNA

CST:

Corticospinal tract

DAPI:

4′,6-Diamidino-2-phenylindole

DEPC:

Diethylpyrocarbonate

DIG:

Digoxigenin

GFAP:

Glial fibrillary acidic protein

GM:

Gray matter

GST-pi:

Glutathione S-transferase pi isoform

OPC:

Oligodendrocyte precursor cell

PB:

Phosphate buffer

PBS:

Phosphate buffered saline

PCR:

Polymerase chain reaction

PK:

Proteinase K

PLP:

Proteolipid protein

SD:

Standard deviation

WM:

White matter

References

  • Agrawal HC, Hartman BK, Shearer WT, Kalmbach S, Margolis FL (1977) Purification and immunohistochemical localization of rat brain myelin proteolipid protein. J Neurochem 28(3):495–508

    Article  CAS  PubMed  Google Scholar 

  • Antanitus DS, Choi BH, Lapham LW (1975) Immunofluorescence staining of astrocytes in vitro using antiserum to glial fibrillary acidic protein. Brain Res 89(2):363–367

    Article  CAS  PubMed  Google Scholar 

  • Bhat RV, Axt KJ, Fosnaugh JS, Smith KJ, Johnson KA, Hill DE, Kinzler KW, Baraban JM (1996) Expression of the APC tumor suppressor protein in oligodendroglia. Glia 17(2):169–174. doi:10.1002/(SICI)1098-1136(199606)17:2<169:AID-GLIA8>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  • Boda E, Di Maria S, Rosa P, Taylor V, Abbracchio MP, Buffo A (2015) Early phenotypic asymmetry of sister oligodendrocyte progenitor cells after mitosis and its modulation by aging and extrinsic factors. Glia 63(2):271–286. doi:10.1002/glia.22750

    Article  PubMed  Google Scholar 

  • Bongarzone ER, Campagnoni CW, Kampf K, Jacobs EC, Handley VW, Schonmann V, Campagnoni AT (1999) Identification of a new exon in the myelin proteolipid protein gene encoding novel protein isoforms that are restricted to the somata of oligodendrocytes and neurons. J Neurosci 19(19):8349–8357

    CAS  PubMed  Google Scholar 

  • Chung KS, Coggeshall RE (1987) Postnatal development of the rat dorsal funiculus. J Neurosci 7(4):972–977

    CAS  PubMed  Google Scholar 

  • Cox KH, DeLeon DV, Angerer LM, Angerer RC (1984) Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol 101(2):485–502

    Article  CAS  PubMed  Google Scholar 

  • Delaunay D, Heydon K, Cumano A, Schwab MH, Thomas JL, Suter U, Nave KA, Zalc B, Spassky N (2008) Early neuronal and glial fate restriction of embryonic neural stem cells. J Neurosci 28(10):2551–2562. doi:10.1523/JNEUROSCI.5497-07.2008

    Article  CAS  PubMed  Google Scholar 

  • Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28(41):10434–10442. doi:10.1523/JNEUROSCI.2831-08.2008

    Article  CAS  PubMed  Google Scholar 

  • Goldman SA, Schanz S, Windrem MS (2008) Stem cell-based strategies for treating pediatric disorders of myelin. Hum Mol Genet 17(R1):R76–R83. doi:10.1093/hmg/ddn052

    Article  CAS  PubMed  Google Scholar 

  • Gorgels TG, De Kort EJ, Van Aanholt HT, Nieuwenhuys R (1989) A quantitative analysis of the development of the pyramidal tract in the cervical spinal cord in the rat. Anat Embryol 179(4):377–385

    Article  CAS  PubMed  Google Scholar 

  • Greenfield EA, Reddy J, Lees A, Dyer CA, Koul O, Nguyen K, Bell S, Kassam N, Hinojoza J, Eaton MJ, Lees MB, Kuchroo VK, Sobel RA (2006) Monoclonal antibodies to distinct regions of human myelin proteolipid protein simultaneously recognize central nervous system myelin and neurons of many vertebrate species. J Neurosci Res 83(3):415–431. doi:10.1002/jnr.20748

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Ma J, McCauley E, Bannerman P, Pleasure D (2009) Early postnatal proteolipid promoter-expressing progenitors produce multilineage cells in vivo. J Neurosci 29(22):7256–7270. doi:10.1523/JNEUROSCI.5653-08.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hartman BK, Agrawal HC, Agrawal D, Kalmbach S (1982) Development and maturation of central nervous system myelin: comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes. Proc Natl Acad Sci USA 79(13):4217–4220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224(3):855–862. doi:10.1006/bbrc.1996.1112

    Article  CAS  PubMed  Google Scholar 

  • Jahn O, Tenzer S, Werner HB (2009) Myelin proteomics: molecular anatomy of an insulating sheath. Mol Neurobiol 40(1):55–72. doi:10.1007/s12035-009-8071-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kitada M, Rowitch DH (2006) Transcription factor co-expression patterns indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord. Glia 54(1):35–46. doi:10.1002/glia.20354

    Article  PubMed  Google Scholar 

  • Kukley M, Nishiyama A, Dietrich D (2010) The fate of synaptic input to NG2 glial cells: neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. J Neurosci 30(24):8320–8331. doi:10.1523/JNEUROSCI.0854-10.2010

    Article  CAS  PubMed  Google Scholar 

  • Li S, Greuel BT, Meng F, Pereira GB, Pitts A, Dobretsova A, Wight PA (2009) Leydig cells express the myelin proteolipid protein gene and incorporate a new alternatively spliced exon. Gene 436(1–2):30–36. doi:10.1016/j.gene.2009.02.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL, Louis DN, Stiles CD, Rowitch DH (2004) The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol 63(5):499–509

    Article  CAS  PubMed  Google Scholar 

  • Ludwin SK, Kosek JC, Eng LF (1976) The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase-labelled antibodies. J Comp Neurol 165(2):197–207. doi:10.1002/cne.901650206

    Article  CAS  PubMed  Google Scholar 

  • Mallon BS, Shick HE, Kidd GJ, Macklin WB (2002) Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. J Neurosci 22(3):876–885

    CAS  PubMed  Google Scholar 

  • Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6(7):e182. doi:10.1371/journal.pbio.0060182

    Article  PubMed Central  PubMed  Google Scholar 

  • Michalski JP, Anderson C, Beauvais A, De Repentigny Y, Kothary R (2011) The proteolipid protein promoter drives expression outside of the oligodendrocyte lineage during embryonic and early postnatal development. PLoS ONE 6(5):e19772. doi:10.1371/journal.pone.0019772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller MJ, Kangas CD, Macklin WB (2009) Neuronal expression of the proteolipid protein gene in the medulla of the mouse. J Neurosci Res 87(13):2842–2853. doi:10.1002/jnr.22121

    Article  CAS  PubMed  Google Scholar 

  • Mobius W, Patzig J, Nave KA, Werner HB (2008) Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. Neuron Glia Biol 4(2):111–127. doi:10.1017/S1740925X0900009X

    Article  PubMed  Google Scholar 

  • Mori T, Wakabayashi T, Takamori Y, Kitaya K, Yamada H (2009) Phenotype analysis and quantification of proliferating cells in the cortical gray matter of the adult rat. Acta histochemica et cytochemica 42(1):1–8. doi:10.1267/ahc.08037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116(1):201–211

    CAS  PubMed  Google Scholar 

  • Nave KA, Lai C, Bloom FE, Milner RJ (1986) Jimpy mutant mouse: a 74-base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in RNA splicing. Proc Natl Acad Sci USA 83(23):9264–9268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nave KA, Lai C, Bloom FE, Milner RJ (1987) Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc Natl Acad Sci USA 84(16):5665–5669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peyron F, Timsit S, Thomas JL, Kagawa T, Ikenaka K, Zalc B (1997) In situ expression of PLP/DM-20, MBP, and CNP during embryonic and postnatal development of the jimpy mutant and of transgenic mice overexpressing PLP. J Neurosci Res 50(2):190–201

    Article  CAS  PubMed  Google Scholar 

  • Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nature reviews. Neuroscience 7(1):11–18. doi:10.1038/nrn1826

    CAS  PubMed  Google Scholar 

  • Sarret C, Combes P, Micheau P, Gelot A, Boespflug-Tanguy O, Vaurs-Barriere C (2010) Novel neuronal proteolipid protein isoforms encoded by the human myelin proteolipid protein 1 gene. Neuroscience 166(2):522–538. doi:10.1016/j.neuroscience.2009.12.047

    Article  CAS  PubMed  Google Scholar 

  • Saugier-Veber P, Munnich A, Bonneau D, Rozet JM, Le Merrer M, Gil R, Boespflug-Tanguy O (1994) X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat Genet 6(3):257–262. doi:10.1038/ng0394-257

    Article  CAS  PubMed  Google Scholar 

  • Schwob VS, Clark HB, Agrawal D, Agrawal HC (1985) Electron microscopic immunocytochemical localization of myelin proteolipid protein and myelin basic protein to oligodendrocytes in rat brain during myelination. J Neurochem 45(2):559–571

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Tanaka KF, Takebayashi H, Higashi M, Wisesmith W, Ono K, Hitoshi S, Ikenaka K (2013) Olig2-lineage cells preferentially differentiate into oligodendrocytes but their processes degenerate at the chronic demyelinating stage of proteolipid protein-overexpressing mouse. J Neurosci Res 91(2):178–186. doi:10.1002/jnr.23153

    Article  CAS  PubMed  Google Scholar 

  • Sidman RL, Dickie MM, Appel SH (1964) Mutant mice (quaking and jimpy) with deficient myelination in the central nervous system. Science 144(3616):309–311

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Mayer JA, Duncan ID (2013) Autophagy promotes oligodendrocyte survival and function following dysmyelination in a long-lived myelin mutant. J Neurosci 33(18):8088–8100. doi:10.1523/JNEUROSCI.0233-13.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spassky N, Goujet-Zalc C, Parmantier E, Olivier C, Martinez S, Ivanova A, Ikenaka K, Macklin W, Cerruti I, Zalc B, Thomas JL (1998) Multiple restricted origin of oligodendrocytes. J Neurosci 18(20):8331–8343

    CAS  PubMed  Google Scholar 

  • Tamura Y, Kataoka Y, Cui Y, Takamori Y, Watanabe Y, Yamada H (2007) Intracellular translocation of glutathione S-transferase pi during oligodendrocyte differentiation in adult rat cerebral cortex in vivo. Neuroscience 148(2):535–540. doi:10.1016/j.neuroscience.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  • Tansey FA, Cammer W (1991) A pi form of glutathione-S-transferase is a myelin- and oligodendrocyte-associated enzyme in mouse brain. J Neurochem 57(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi K, Takebayashi H, Manabe T, Tanaka KF, Makinodan M, Yamauchi T, Makinodan E, Matsuyoshi H, Okuda H, Ikenaka K, Wanaka A (2008) Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes. J Neurosci Res 86(16):3494–3502. doi:10.1002/jnr.21862

    Article  CAS  PubMed  Google Scholar 

  • Tenenbaum D, Folch-Pi J (1966) The preparation and characterization of water-soluble proteolipid protein from bovine brain white matter. Biochim Biophys Acta 115(1):141–147

    Article  CAS  PubMed  Google Scholar 

  • Timsit SG, Bally-Cuif L, Colman DR, Zalc B (1992) DM-20 mRNA is expressed during the embryonic development of the nervous system of the mouse. J Neurochem 58(3):1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Timsit S, Martinez S, Allinquant B, Peyron F, Puelles L, Zalc B (1995) Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J Neurosci 15(2):1012–1024

    CAS  PubMed  Google Scholar 

  • Tuason MC, Rastikerdar A, Kuhlmann T, Goujet-Zalc C, Zalc B, Dib S, Friedman H, Peterson A (2008) Separate proteolipid protein/DM20 enhancers serve different lineages and stages of development. J Neurosci 28(27):6895–6903. doi:10.1523/JNEUROSCI.4579-07.2008

    Article  CAS  PubMed  Google Scholar 

  • Ueki T, Tsuruo Y, Yamamoto Y, Yoshimura K, Takanaga H, Seiwa C, Motojima K, Asou H, Yamamoto M (2012) A new monoclonal antibody, 4F2, specific for the oligodendroglial cell lineage, recognizes ATP-dependent RNA helicase Ddx54: possible association with myelin basic protein. J Neurosci Res 90(1):48–59. doi:10.1002/jnr.22736

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Dimova N, Cambi F (2007) PLP/DM20 ratio is regulated by hnRNPH and F and a novel G-rich enhancer in oligodendrocytes. Nucleic Acids Res 35(12):4164–4178. doi:10.1093/nar/gkm387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willard HF, Riordan JR (1985) Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science 230(4728):940–942

    Article  CAS  PubMed  Google Scholar 

  • Ye P, Bagnell R, D’Ercole AJ (2003) Mouse NG2 + oligodendrocyte precursors express mRNA for proteolipid protein but not its DM-20 variant: a study of laser microdissection-captured NG2 + cells. J Neurosci 23(11):4401–4405

    CAS  PubMed  Google Scholar 

  • Zhan R, Yamamoto M, Ueki T, Yoshioka N, Tanaka K, Morisaki H, Seiwa C, Yamamoto Y, Kawano H, Tsuruo Y, Watanabe K, Asou H, Aiso S (2013) A DEAD-box RNA helicase Ddx54 protein in oligodendrocytes is indispensable for myelination in the central nervous system. J Neurosci Res 91(3):335–348. doi:10.1002/jnr.23162

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135(1):145–157. doi:10.1242/dev.004895

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Bernard Zalc, Research Center of the Brain and Spinal Cord Institute, INSERM U975 (Paris, France) for generously providing the pBS-DM-20 plasmid and Dr. John Alberta, Department of Cancer Biology, Dana-Farber Cancer Institute (Boston, MA) for kindly providing the Olig2 antibody. The authors are also grateful to Ms. Nice Mamiya, Ms. Yukari Hirohara, and Dr. Yukie Kyakumoto for their excellent technical assistance. This study was supported by a Grant-in-Aid for Young Scientists (B) (22790181) and a Grant-in-Aid for Scientific Research on Innovative Areas (23124501, 25124701) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Kitada.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could have influenced or biased the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, K., Dezawa, M. & Kitada, M. The expression of PLP/DM-20 mRNA is restricted to the oligodendrocyte-lineage cells in the adult rat spinal cord. Histochem Cell Biol 145, 147–161 (2016). https://doi.org/10.1007/s00418-015-1384-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1384-5

Keywords

Navigation