Skip to main content

Advertisement

Log in

Peripheral CD3+CD4+ T cells as indicators of disease activity in thyroid eye disease: age-dependent significance

  • Inflammatory Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To provide an in-depth analysis of the association of peripheral lymphocytes and the disease activity of thyroid eye disease (TED).

Methods

This retrospective study enrolled 65 active TED patients and 46 inactive TED patients. Comparative analyses of peripheral lymphocyte subsets were conducted between active and inactive patients. Subgroup analyses were performed based on sex, age, disease duration, and severity. Correlation analyses explored the associations between lymphocyte subsets and TED activity indicators. Prediction models for TED activity were established using objective indicators.

Results

Significantly elevated levels of CD3+CD4+ T cells were observed in active TED patients compared to inactive patients (P = 0.010). Subgroup analyses further revealed that this disparity was most prominent in females (P = 0.036), patients aged 50 years and younger (P = 0.003), those with long-term disease duration (P = 0.022), and individuals with moderate-to-severe disease (P = 0.021), with age exerting the most substantial impact. Subsequent correlation analysis confirmed the positive association between CD3+CD4+ T cells and the magnetic resonance imaging indicator of TED activity among patients aged 50 years and younger (P = 0.038). The combined prediction models for TED activity, established using objective indicators including CD3+CD4+ T cells, yielded areas under curve of 0.786 for all patients and 0.816 for patients aged 50 years and younger.

Conclusions

Peripheral CD3+CD4+ T cells are associated with disease activity of TED, especially in patients aged 50 years and younger. Our study has deepened the understanding of the peripheral T cell profiles in TED patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartalena L, Tanda ML (2022) Current concepts regarding Graves’ orbitopathy. J Intern Med 292:692–716. https://doi.org/10.1111/joim.13524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bahn RS (2010) Graves’ ophthalmopathy. N Engl J Med 362:726–738. https://doi.org/10.1056/NEJMra0905750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Menconi F, Marcocci C, Marinò M (2014) Diagnosis and classification of Graves’ disease. Autoimmun Rev 13:398–402. https://doi.org/10.1016/j.autrev.2014.01.013

    Article  PubMed  Google Scholar 

  4. Gianoukakis AG, Khadavi N, Smith TJ (2008) Cytokines, Graves’ disease, and thyroid-associated ophthalmopathy. Thyroid 18:953–958. https://doi.org/10.1089/thy.2007.0405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartalena L, Fatourechi V (2014) Extrathyroidal manifestations of Graves’ disease: a 2014 update. J Endocrinol Invest 37:691–700. https://doi.org/10.1007/s40618-014-0097-2

    Article  CAS  PubMed  Google Scholar 

  6. Mourits MP, Prummel MF, Wiersinga WM, Koornneef L (1997) Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin Endocrinol (Oxf) 47:9–14. https://doi.org/10.1046/j.1365-2265.1997.2331047.x

    Article  CAS  PubMed  Google Scholar 

  7. Bartalena L, Baldeschi L, Dickinson A, Eckstein A, Kendall-Taylor P, Marcocci C, Mourits M, Perros P, Boboridis K, Boschi A, Currò N, Daumerie C, Kahaly GJ, Krassas GE, Lane CM, Lazarus JH, Marinò M, Nardi M, Neoh C, Orgiazzi J, Pearce S, Pinchera A, Pitz S, Salvi M, Sivelli P, Stahl M, von Arx G, Wiersinga WM (2008) Consensus statement of the European Group on Graves’ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol 158:273–285. https://doi.org/10.1530/eje-07-0666

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H, Fan J, Qu J, Han Q, Zhou H, Song X (2023) Predictive markers for anti-inflammatory treatment response in thyroid eye disease. Front Endocrinol 14:1292519. https://doi.org/10.3389/fendo.2023.1292519

    Article  Google Scholar 

  9. Zhang H, Lu T, Liu Y, Jiang M, Wang Y, Song X, Fan X and Zhou H (2023) Application of quantitative MRI in thyroid eye disease: imaging techniques and clinical practices. J Magn Reson Imaging. https://doi.org/10.1002/jmri.29114

  10. Lytton SD, Ponto KA, Kanitz M, Matheis N, Kohn LD, Kahaly GJ (2010) A novel thyroid stimulating immunoglobulin bioassay is a functional indicator of activity and severity of Graves’ orbitopathy. J Clin Endocrinol Metab 95:2123–2131. https://doi.org/10.1210/jc.2009-2470

    Article  CAS  PubMed  Google Scholar 

  11. Wakelkamp IM, Bakker O, Baldeschi L, Wiersinga WM, Prummel MF (2003) TSH-R expression and cytokine profile in orbital tissue of active vs. inactive Graves’ ophthalmopathy patients. Clin Endocrinol (Oxf) 58:280–287. https://doi.org/10.1046/j.1365-2265.2003.01708.x

    Article  CAS  PubMed  Google Scholar 

  12. Li H, Wang B, Li Q, Li Q, Qiao J, Lin D, Sui C, Ye L, Zhai H, Jiang B, Wang N, Han B, Jiang M, Tao X, Shao Z, Zhu C, Ma Y, Xiong P, Sun J, Zhou H, Lu Y (2023) T cell subsets are associated with clinical activity and efficacy of 4.5g intravenous glucocorticoid for moderate-to-severe thyroid-associated ophthalmopathy. Endocr Res 48:55–67. https://doi.org/10.1080/07435800.2023.2219734

    Article  CAS  PubMed  Google Scholar 

  13. Huang Y, Fang S, Li D, Zhou H, Li B, Fan X (2019) The involvement of T cell pathogenesis in thyroid-associated ophthalmopathy. Eye (Lond) 33:176–182. https://doi.org/10.1038/s41433-018-0279-9

    Article  CAS  PubMed  Google Scholar 

  14. Hwang CJ, Afifiyan N, Sand D, Naik V, Said J, Pollock SJ, Chen B, Phipps RP, Goldberg RA, Smith TJ, Douglas RS (2009) Orbital fibroblasts from patients with thyroid-associated ophthalmopathy overexpress CD40: CD154 hyperinduces IL-6, IL-8, and MCP-1. Invest Ophthalmol Vis Sci 50:2262–2268. https://doi.org/10.1167/iovs.08-2328

    Article  PubMed  Google Scholar 

  15. Rotondo Dottore G, Torregrossa L, Caturegli P, Ionni I, Sframeli A, Sabini E, Menconi F, Piaggi P, Sellari-Franceschini S, Nardi M, Latrofa F, Vitti P, Marcocci C, Basolo F, Marinò M (2018) Association of T and B cells infiltrating orbital tissues with clinical features of graves orbitopathy. JAMA Ophthalmol 136:613–619. https://doi.org/10.1001/jamaophthalmol.2018.0806

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fang S, Huang Y, Zhong S, Li Y, Zhang Y, Li Y, Sun J, Liu X, Wang Y, Zhang S, Xu T, Sun X, Gu P, Li D, Zhou H, Li B, Fan X (2017) Regulation of orbital fibrosis and adipogenesis by pathogenic Th17 cells in graves orbitopathy. J Clin Endocrinol Metab 102:4273–4283. https://doi.org/10.1210/jc.2017-01349

    Article  PubMed  Google Scholar 

  17. Fang S, Huang Y, Wang N, Zhang S, Zhong S, Li Y, Sun J, Liu X, Wang Y, Gu P, Li B, Zhou H, Fan X (2019) Insights into local orbital immunity: evidence for the involvement of the Th17 cell pathway in thyroid-associated ophthalmopathy. J Clin Endocrinol Metab 104:1697–1711. https://doi.org/10.1210/jc.2018-01626

    Article  PubMed  Google Scholar 

  18. Hu H, Liang L, Ge Q, Jiang X, Fu Z, Liu C, Long J (2022) Correlation between peripheral T cell subsets and the activity of thyroid-associated ophthalmopathy. Int J Endocrinol 2022:2705650. https://doi.org/10.1155/2022/2705650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tollerud DJ, Clark JW, Brown LM, Neuland CY, Pankiw-Trost LK, Blattner WA, Hoover RN (1989) The influence of age, race, and gender on peripheral blood mononuclear-cell subsets in healthy nonsmokers. J Clin Immunol 9:214–222. https://doi.org/10.1007/bf00916817

    Article  CAS  PubMed  Google Scholar 

  20. Abdullah M, Chai PS, Chong MY, Tohit ER, Ramasamy R, Pei CP, Vidyadaran S (2012) Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell Immunol 272:214–219. https://doi.org/10.1016/j.cellimm.2011.10.009

    Article  CAS  PubMed  Google Scholar 

  21. Laurence J (1993) T-cell subsets in health, infectious disease, and idiopathic CD4+ T lymphocytopenia. Ann Intern Med 119:55–62. https://doi.org/10.7326/0003-4819-119-1-199307010-00010

    Article  CAS  PubMed  Google Scholar 

  22. Bartalena L (2013) Diagnosis and management of Graves disease: a global overview. Nat Rev Endocrinol 9:724–734. https://doi.org/10.1038/nrendo.2013.193

    Article  CAS  PubMed  Google Scholar 

  23. Bartalena L, Kahaly GJ, Baldeschi L, Dayan CM, Eckstein A, Marcocci C, Marinò M, Vaidya B, Wiersinga WM (2021) The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur J Endocrinol 185:G43–G67. https://doi.org/10.1530/EJE-21-0479

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Su Y, Jiang M, Fang S, Huang Y, Li Y, Zhong S, Wang Y, Zhang S, Wu Y, Sun J, Fan X, Zhou H (2021) Application of magnetic resonance imaging in the evaluation of disease activity in graves’ ophthalmopathy. Endocr Pract 27:198–205. https://doi.org/10.1016/j.eprac.2020.09.008

    Article  PubMed  Google Scholar 

  25. Hu H, Xu XQ, Wu FY, Chen HH, Su GY, Shen J, Hong XN, Shi HB (2016) Diagnosis and stage of Graves’ ophthalmopathy: efficacy of quantitative measurements of the lacrimal gland based on 3-T magnetic resonance imaging. Exp Ther Med 12:725–729. https://doi.org/10.3892/etm.2016.3389

    Article  PubMed  PubMed Central  Google Scholar 

  26. Berger M, Matlach J, Pitz S, Berres M, Axmacher F, Kahaly GJ, Brockmann MA, Müller-Eschner M (2022) Imaging of the medial rectus muscle predicts the development of optic neuropathy in thyroid eye disease. Sci Rep 12:6259. https://doi.org/10.1038/s41598-022-10043-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen L, Hu H, Chen HH, Chen W, Wu Q, Wu FY, Xu XQ (2021) Usefulness of two-point Dixon T2-weighted imaging in thyroid-associated ophthalmopathy: comparison with conventional fat saturation imaging in fat suppression quality and staging performance. Br J Radiol 94:20200884. https://doi.org/10.1259/bjr.20200884

    Article  PubMed  Google Scholar 

  28. Huang Y, Wu Y, Zhang S, Lu Y, Wang Y, Liu X, Zhong S, Wang Y, Li Y, Sun J, Fang S, Zhou H (2022) Immunophenotype of lacrimal glands in graves orbitopathy: implications for the pathogenesis of Th1 and Th17 immunity. Thyroid 32:949–961. https://doi.org/10.1089/thy.2021.0671

    Article  CAS  PubMed  Google Scholar 

  29. Han R, Smith TJ (2006) T helper type 1 and type 2 cytokines exert divergent influence on the induction of prostaglandin E2 and hyaluronan synthesis by interleukin-1beta in orbital fibroblasts: implications for the pathogenesis of thyroid-associated ophthalmopathy. Endocrinology 147:13–19

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Chen Z, Wang T, Guo H, Liu Y, Dang N, Hu S, Wu L, Zhang C, Ye K, Shi B (2021) A novel CD4+ CTL subtype characterized by chemotaxis and inflammation is involved in the pathogenesis of Graves’ orbitopathy. Cell Mol Immunol 18:735–745. https://doi.org/10.1038/s41423-020-00615-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moulton VR (2018) Sex hormones in acquired immunity and autoimmune disease. Front Immunol 9:2279. https://doi.org/10.3389/fimmu.2018.02279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Markle JGM, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084–1088. https://doi.org/10.1126/science.1233521

  33. Dolman PJ (2021) Dysthyroid optic neuropathy: evaluation and management. J Endocrinol Invest 44:421–429. https://doi.org/10.1007/s40618-020-01361-y

    Article  CAS  PubMed  Google Scholar 

  34. Goronzy JJ, Weyand CM (2012) Immune aging and autoimmunity. Cell Mol Life Sci:CMLS 69:1615–1623. https://doi.org/10.1007/s00018-012-0970-0

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Zhu L, Wang R, Xie L, Ren J, Ma S, Zhang W, Liu X, Huang Z, Chen B, Li Z, Feng H, Liu G-H, Wang S, Qu J, Su W (2022) Aging weakens Th17 cell pathogenicity and ameliorates experimental autoimmune uveitis in mice. Protein Cell 13:422–445. https://doi.org/10.1007/s13238-021-00882-3

    Article  CAS  PubMed  Google Scholar 

  36. Levy N, Leiba H, Landau K, Zloto O, Huna-Baron R (2022) Clinical profile of 80-year-old and older thyroid eye disease patients. Graefes Arch Clin Exp Ophthalmol 260:2727–2736. https://doi.org/10.1007/s00417-022-05627-4

  37. Su Y, Liu X, Fang S, Huang Y, Li Y, Zhong S, Wang Y, Zhang S, Zhou H, Sun J, Fan X (2022) Age-related difference in extraocular muscles and its relation to clinical manifestations in an ethnically homogenous group of patients with Graves’ orbitopathy. Graefes Arch Clin Exp Ophthalmol 260:583–589. https://doi.org/10.1007/s00417-021-05377-9

    Article  PubMed  Google Scholar 

  38. Smith TJ, Hegedüs L, Lesser I, Perros P, Dorris K, Kinrade M, Troy-Ott P, Wuerth L, Nori M (2023) How patients experience thyroid eye disease. Front Endocrinol 14:1283374. https://doi.org/10.3389/fendo.2023.1283374

    Article  Google Scholar 

  39. Perros P, Žarković M, Pearce SH, Razvi S, Kolli H, Dickinson AJ (2023) Inter-observer variability of clinical activity score: assessments in patients with thyroid eye disease. Am J Ophthalmol 252. https://doi.org/10.1016/j.ajo.2023.03.027

  40. Olejarz M, Szczepanek-Parulska E, Ostałowska-Klockiewicz A, Antosik P, Sawicka-Gutaj N, Helak-Łapaj C, Stopa M, Ruchala M (2023) High IgG4 serum concentration is associated with active Graves orbitopathy. Front Endocrinol 14:1083321. https://doi.org/10.3389/fendo.2023.1083321

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (81930024, 82071003, 82271122 and 82201235); the Science and Technology Commission of Shanghai (20DZ2270800); Shanghai Key Clinical Specialty, Shanghai Eye Disease Research Center (2022ZZ01003); Clinical Acceleration Program of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine (JYLJ202202); the Project of Hospital Management from Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine (YGA202303).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Haiyang Zhang and Xuefei Song; Methodology: Haiyang Zhang; Validation: Xuefei Song and Lianfei Fang; Formal analysis: Lianfei Fang, Hui Wang, Mengda Jiang, and Ling Zhu; Writing-original draft preparation: Haiyang Zhang, Lianfei Fang, and Yumeng Cheng; Writing – Review & Editing: Xuefei Song, Jing Sun, Huifang Zhou, and Sijie Fang; Visualization: Lianfei Fang and Yuhang Peng; Resources: Jing Sun, Yinwei Li, Ling Zhu, and Huifang Zhou; Supervision: Huifang Zhou, Xuefei Song, and Jing Sun. Project administration: Xuefei Song. We thank Mr. Zhenhua Zhang for his help in collecting clinical data of the subjects.

Corresponding authors

Correspondence to Huifang Zhou, Jing Sun or Xuefei Song.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine (Shanghai, China) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was waived in this retrospective study with the approval of the institutional review board of our hospital (SH9H-2022-T161-2).

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Haiyang Zhang and Lianfei Fang are the co-first authors that have equal contributions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Fang, L., Cheng, Y. et al. Peripheral CD3+CD4+ T cells as indicators of disease activity in thyroid eye disease: age-dependent significance. Graefes Arch Clin Exp Ophthalmol (2024). https://doi.org/10.1007/s00417-024-06496-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00417-024-06496-9

Keywords

Navigation