Skip to main content

Advertisement

Log in

Retinal imaging and Alzheimer’s disease: a future powered by Artificial Intelligence

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative condition that primarily affects brain tissue. Because the retina and brain share the same embryonic origin, visual deficits have been reported in AD patients. Artificial Intelligence (AI) has recently received a lot of attention due to its immense power to process and detect image hallmarks and make clinical decisions (like diagnosis) based on images. Since retinal changes have been reported in AD patients, AI is being proposed to process images to predict, diagnose, and prognosis AD. As a result, the purpose of this review was to discuss the use of AI trained on retinal images of AD patients. According to previous research, AD patients experience retinal thickness and retinal vessel density changes, which can occasionally occur before the onset of the disease’s clinical symptoms. AI and machine vision can detect and use these changes in the domains of disease prediction, diagnosis, and prognosis. As a result, not only have unique algorithms been developed for this condition, but also databases such as the Retinal OCTA Segmentation dataset (ROSE) have been constructed for this purpose. The achievement of high accuracy, sensitivity, and specificity in the classification of retinal images between AD and healthy groups is one of the major breakthroughs in using AI based on retinal images for AD. It is fascinating that researchers could pinpoint individuals with a positive family history of AD based on the properties of their eyes. In conclusion, the growing application of AI in medicine promises its future position in processing different aspects of patients with AD, but we need cohort studies to determine whether it can help to follow up with healthy persons at risk of AD for a quicker diagnosis or assess the prognosis of patients with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The entirety of the data produced or examined throughout this study has been incorporated into this manuscript.

Abbreviations

Aβ-42:

Amyloid beta-42

AD:

Alzheimer’s disease

ADNI:

Alzheimer’s disease neuroimaging initiative

ADSA:

Alzheimer’s disease assessment scale

AI:

Artificial Intelligence

AUC:

Area under the curve

CERAD:

Consortium to establish a registry for Alzheimer`s disease

CNN:

Convolutional neural network

CSF:

Cerebrospinal fluid

DL:

Deep learning

FDA:

Food and Drug Administration

GCL:

Ganglion cell layer

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

HC:

Healthy controls

MCI:

Mild cognitive impairment

ML:

Machine learning

MMSE:

Mini-mental State Examination

MRI:

Magnetic resonance imaging

OCT:

Optical coherence tomography

OCTA:

Optical coherence tomography angiopathy

ONL:

Outer nuclear layer

OPL:

Outer plexiform layer

PD:

Parkinson’s disease

PET:

Positron emission tomography

RNFL:

Retina nerve fiber layer

ROSE:

Retinal octa segmentation dataset

SLO:

Scanning laser ophthalmoscope

SVM:

Support vector machine

References

  1. Ramesh AN, Kambhampati C, Monson JR, Drew PJ (2004) Artificial intelligence in medicine. Ann R Coll Surg Engl 86:334–338. https://doi.org/10.1308/147870804290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H (2018) Artificial intelligence in radiology. Nat Rev Cancer 18:500–510. https://doi.org/10.1038/s41568-018-0016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data 8:53. https://doi.org/10.1186/s40537-021-00444-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cole ED, Al-Khaled T, Memon A, Ting D, Campbell JP, Chiang M, Chan RVP, Abid A, Brown EN, Akkara JD, Valikodath N, Tsui JC, Bhagat N, de la Garza A (2023) Introduction to artificial intelligence in ophthalmology. American Academy of Ophthalmology. https://eyewiki.aao.org/Introduction_to_Artificial_Intelligence_in_Ophthalmology

  5. Farabi Maleki S, Yousefi M, Afshar S, Pedrammehr S, Lim CP, Jafarizadeh A, Asadi H Artificial Intelligence for multiple sclerosis management using retinal images: pearl, peaks, and pitfalls. Seminars in Ophthalmology: 1–18 https://doi.org/10.1080/08820538.2023.2293030

  6. O Adebayo ZA Bhuiyan Z Ahmed 2023 Exploring the effectiveness of artificial intelligence, machine learning and deep learning in trauma triage: A systematic review and meta-analysis Digit Health 9 https://doi.org/10.1177/20552076231205736

  7. Abdollahi M, Jafarizadeh A, Asbagh AG, Sobhi N, Pourmoghtader K, Pedrammehr S, Asadi H, Alizadehsani R, Tan R-S, Acharya UR (2023) Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: a review of the last decade. arXiv preprint arXiv:231107609. https://doi.org/10.48550/arXiv.2311.07609

  8. Lin E, Lin CH, Lane HY (2021) Deep Learning with Neuroimaging and Genomics in Alzheimer’s Disease. Int J Mol Sci 22 https://doi.org/10.3390/ijms22157911

  9. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC (2018) Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 1:39. https://doi.org/10.1038/s41746-018-0040-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Querques G, Borrelli E, Sacconi R, De Vitis L, Leocani L, Santangelo R, Magnani G, Comi G, Bandello F (2019) Functional and morphological changes of the retinal vessels in Alzheimer’s disease and mild cognitive impairment. Sci Rep 9:63. https://doi.org/10.1038/s41598-018-37271-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, Kile SJ, Blanco A, Fuchs DT, Ashfaq A, Frautschy S, Cole GM, Miller CA, Hinton DR, Verdooner SR, Black KL, Koronyo-Hamaoui M (2017) Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight 2 https://doi.org/10.1172/jci.insight.93621

  12. Ramirez AI, de Hoz R, Salobrar-Garcia E, Salazar JJ, Rojas B, Ajoy D, López-Cuenca I, Rojas P, Triviño A, Ramírez JM (2017) The role of microglia in retinal neurodegeneration: Alzheimer’s Disease, parkinson, and glaucoma. Front Aging Neurosci 9:214. https://doi.org/10.3389/fnagi.2017.00214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahmad FB, Anderson RN (2021) The leading causes of death in the US for 2020. Jama 325:1829–1830. https://doi.org/10.1001/jama.2021.5469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. (2022) 2022 Alzheimer’s disease facts and figures. Alzheimers Dement 18: 700–789 https://doi.org/10.1002/alz.12638

  15. Kumar A, Sidhu J, Goyal A, Tsao JW (2022) Alzheimer DiseaseStatPearls. StatPearls Publishing Copyright © 2022. StatPearls Publishing LLC., Treasure Island (FL)

    Google Scholar 

  16. Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A (2021) The amyloid-β pathway in Alzheimer’s disease. Molecular Psychiatry 26:5481–5503. https://doi.org/10.1038/s41380-021-01249-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang H, Zheng Y (2019) β Amyloid hypothesis in Alzheimer’s Disease:pathogenesis, prevention, and management. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 41:702–708. https://doi.org/10.3881/j.issn.1000-503X.10875

    Article  PubMed  Google Scholar 

  18. Jongsiriyanyong S, Limpawattana P (2018) Mild cognitive impairment in clinical practice: a review article. Am J Alzheimers Dis Other Demen 33:500–507. https://doi.org/10.1177/1533317518791401

    Article  PubMed  Google Scholar 

  19. Förstl H, Kurz A (1999) Clinical features of Alzheimer’s disease. European Archives of Psychiatry and Clinical Neuroscience 249:288–290. https://doi.org/10.1007/s004060050101

    Article  PubMed  Google Scholar 

  20. Mendez MF, Tomsak RL, Remler B (1990) Disorders of the visual system in Alzheimer’s disease. J Clin Neuroophthalmol 10:62–69

    CAS  PubMed  Google Scholar 

  21. Hane FT, Robinson M, Lee BY, Bai O, Leonenko Z, Albert MS (2017) Recent progress in Alzheimer’s disease research, Part 3: Diagnosis and Treatment. J Alzheimers Dis 57:645–665. https://doi.org/10.3233/jad-160907

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dharmarajan TS, Gunturu SG (2009) Alzheimer’s disease: a healthcare burden of epidemic proportion. Am Health Drug Benefits 2:39–47

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharp PF, Manivannan A (1997) The scanning laser ophthalmoscope. Phys Med Biol 42:951–966. https://doi.org/10.1088/0031-9155/42/5/014

    Article  CAS  PubMed  Google Scholar 

  24. Vujosevic S, Trento B, Bottega E, Urban F, Pilotto E, Midena E (2012) Scanning laser ophthalmoscopy in the retromode in diabetic macular oedema. Acta Ophthalmol 90:e374-380. https://doi.org/10.1111/j.1755-3768.2012.02410.x

    Article  PubMed  Google Scholar 

  25. Podoleanu AG (2012) Optical coherence tomography. J Microsc 247:209–219. https://doi.org/10.1111/j.1365-2818.2012.03619.x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Szarka A (2015) The role OF β-Amyloid and mitochondrial dysfunction in the pathogenesis Of Alzheimer’s disease. Ideggyogy Sz 68:222–228. https://doi.org/10.18071/isz.68.0222

    Article  PubMed  Google Scholar 

  27. Grimaldi A, Pediconi N, Oieni F, Pizzarelli R, Rosito M, Giubettini M, Santini T, Limatola C, Ruocco G, Ragozzino D, Di Angelantonio S (2019) Neuroinflammatory processes, A1 astrocyte activation and protein aggregation in the retina of Alzheimer’s disease patients, possible biomarkers for early diagnosis. Front Neurosci 13:925. https://doi.org/10.3389/fnins.2019.00925

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hart NJ, Koronyo Y, Black KL, Koronyo-Hamaoui M (2016) Ocular indicators of Alzheimer’s: exploring disease in the retina. Acta Neuropathol 132:767–787. https://doi.org/10.1007/s00401-016-1613-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim JI, Kang BH (2019) Decreased retinal thickness in patients with Alzheimer’s disease is correlated with disease severity. PLoS One 14:e0224180. https://doi.org/10.1371/journal.pone.0224180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54(Suppl 1):S204-217. https://doi.org/10.1016/j.neuroimage.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  31. Doustar J, Rentsendorj A, Torbati T, Regis GC, Fuchs DT, Sheyn J, Mirzaei N, Graham SL, Shah PK, Mastali M, Van Eyk JE, Black KL, Gupta VK, Mirzaei M, Koronyo Y, Koronyo-Hamaoui M (2020) Parallels between retinal and brain pathology and response to immunotherapy in old, late-stage Alzheimer’s disease mouse models. Aging Cell 19:e13246. https://doi.org/10.1111/acel.13246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hinton DR, Sadun AA, Blanks JC, Miller CA (1986) Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med 315:485–487. https://doi.org/10.1056/nejm198608213150804

    Article  CAS  PubMed  Google Scholar 

  33. Blanks JC, Torigoe Y, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging 17:377–384. https://doi.org/10.1016/0197-4580(96)00010-3

    Article  CAS  PubMed  Google Scholar 

  34. Ashok A, Singh N, Chaudhary S, Bellamkonda V, Kritikos AE, Wise AS, Rana N, McDonald D, Ayyagari R (2020) Retinal Degeneration and Alzheimer’s Disease: An Evolving Link. Int J Mol Sci 21 https://doi.org/10.3390/ijms21197290

  35. Ge YJ, Xu W, Ou YN, Qu Y, Ma YH, Huang YY, Shen XN, Chen SD, Tan L, Zhao QH, Yu JT (2021) Retinal biomarkers in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 69:101361. https://doi.org/10.1016/j.arr.2021.101361

    Article  CAS  PubMed  Google Scholar 

  36. Kim HM, Han JW, Park YJ, Bae JB, Woo SJ, Kim KW (2022) Association between retinal layer thickness and cognitive decline in older adults. JAMA Ophthalmol 140:683–690. https://doi.org/10.1001/jamaophthalmol.2022.1563

    Article  PubMed  PubMed Central  Google Scholar 

  37. Santangelo R, Huang SC, Bernasconi MP, Falautano M, Comi G, Magnani G, Leocani L (2020) Neuro-retina might reflect Alzheimer’s disease stage. J Alzheimers Dis 77:1455–1468. https://doi.org/10.3233/jad-200043

    Article  CAS  PubMed  Google Scholar 

  38. Tsai CS, Ritch R, Schwartz B, Lee SS, Miller NR, Chi T, Hsieh FY (1991) Optic nerve head and nerve fiber layer in Alzheimer’s disease. Arch Ophthalmol 109:199–204. https://doi.org/10.1001/archopht.1991.01080020045040

    Article  CAS  PubMed  Google Scholar 

  39. Bambo MP, Garcia-Martin E, Gutierrez-Ruiz F, Pinilla J, Perez-Olivan S, Larrosa JM, Polo V, Pablo L (2015) Analysis of optic disk color changes in Alzheimer’s disease: a potential new biomarker. Clin Neurol Neurosurg 132:68–73. https://doi.org/10.1016/j.clineuro.2015.02.016

    Article  PubMed  Google Scholar 

  40. Zhang YS, Onishi AC, Zhou N, Song J, Samra S, Weintraub S, Fawzi AA (2019) Characterization of inner retinal hyperreflective alterations in early cognitive impairment on adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 60:3527–3536. https://doi.org/10.1167/iovs.19-27135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kwon JY, Yang JH, Han JS, Kim DG (2017) Analysis of the retinal nerve fiber layer thickness in Alzheimer disease and mild cognitive impairment. Korean J Ophthalmol 31:548–556. https://doi.org/10.3341/kjo.2016.0118

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marziani E, Pomati S, Ramolfo P, Cigada M, Giani A, Mariani C, Staurenghi G (2013) Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer’s disease using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:5953–5958. https://doi.org/10.1167/iovs.13-12046

    Article  PubMed  Google Scholar 

  43. Shi XH, Dong L, Zhang RH, Zhou DJ, Ling SG, Shao L, Yan YN, Wang YX, Wei WB (2023) Relationships between quantitative retinal microvascular characteristics and cognitive function based on automated artificial intelligence measurements. Front Cell Dev Biol 11:1174984. https://doi.org/10.3389/fcell.2023.1174984

    Article  PubMed  PubMed Central  Google Scholar 

  44. Czakó C, Kovács T, Ungvari Z, Csiszar A, Yabluchanskiy A, Conley S, Csipo T, Lipecz A, Horváth H, Sándor GL, István L, Logan T, Nagy ZZ, Kovács I (2020) Retinal biomarkers for Alzheimer’s disease and vascular cognitive impairment and dementia (VCID): implication for early diagnosis and prognosis. Geroscience 42:1499–1525. https://doi.org/10.1007/s11357-020-00252-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chua J, Hu Q, Ke M, Tan B, Hong J, Yao X, Hilal S, Venketasubramanian N, Garhöfer G, Cheung CY, Wong TY, Chen CL, Schmetterer L (2020) Retinal microvasculature dysfunction is associated with Alzheimer’s disease and mild cognitive impairment. Alzheimers Res Ther 12:161. https://doi.org/10.1186/s13195-020-00724-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. den Haan J, van de Kreeke JA, van Berckel BN, Barkhof F, Teunissen CE, Scheltens P, Verbraak FD, Bouwman FH (2019) Is retinal vasculature a biomarker in amyloid proven Alzheimer’s disease? Alzheimers Dement (Amst) 11:383–391. https://doi.org/10.1016/j.dadm.2019.03.006

    Article  Google Scholar 

  47. Robbins CB, Grewal DS, Stinnett SS, Soundararajan S, Yoon SP, Polascik BW, Liu AJ, Burke JR, Fekrat S (2021) Assessing the retinal microvasculature in individuals with early and late-onset Alzheimer’s disease. Ophthalmic Surg Lasers Imaging Retina 52:336–344. https://doi.org/10.3928/23258160-20210528-06

    Article  PubMed  Google Scholar 

  48. Son T, Ma J, Toslak D, Rossi A, Kim H, Chan RVP, Yao X (2022) Light color efficiency-balanced trans-palpebral illumination for widefield fundus photography of the retina and choroid. Sci Rep 12:13850. https://doi.org/10.1038/s41598-022-18061-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Bulut M, Kurtuluş F, Gözkaya O, Erol MK, Cengiz A, Akıdan M, Yaman A (2018) Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol 102:233–237. https://doi.org/10.1136/bjophthalmol-2017-310476

    Article  PubMed  Google Scholar 

  50. de Carlo TE, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 1:5. https://doi.org/10.1186/s40942-015-0005-8

    Article  PubMed  PubMed Central  Google Scholar 

  51. Al-Antari MA, Al-Masni MA, Choi MT, Han SM, Kim TS (2018) A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform 117:44–54. https://doi.org/10.1016/j.ijmedinf.2018.06.003

    Article  PubMed  Google Scholar 

  52. Frizzell TO, Glashutter M, Liu CC, Zeng A, Pan D, Hajra SG, D’Arcy RCN, Song X (2022) Artificial intelligence in brain MRI analysis of Alzheimer’s disease over the past 12 years: A systematic review. Ageing Res Rev 77:101614. https://doi.org/10.1016/j.arr.2022.101614

    Article  PubMed  Google Scholar 

  53. Wang L (2005) Support Vector Machines: Theory and Applications. Springer, Berlin Heidelberg

    Book  Google Scholar 

  54. Mahmoodi D, Soleimani A, Khosravi H, Taghizadeh M (2011) FPGA simulation of linear and nonlinear support vector machine. J Softw Eng Appl 4(5):9. https://doi.org/10.4236/jsea.2011.45036

    Article  Google Scholar 

  55. Nunes A, Silva G, Duque C, Januário C, Santana I, Ambrósio AF, Castelo-Branco M, Bernardes R (2019) Retinal texture biomarkers may help to discriminate between Alzheimer’s, Parkinson’s, and healthy controls. PLoS One 14:e0218826. https://doi.org/10.1371/journal.pone.0218826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheung CY, Ran AR, Wang S, Chan VTT, Sham K, Hilal S, Venketasubramanian N, Cheng CY, Sabanayagam C, Tham YC, Schmetterer L, McKay GJ, Williams MA, Wong A, Au LWC, Lu Z, Yam JC, Tham CC, Chen JJ, Dumitrascu OM, Heng PA, Kwok TCY, Mok VCT, Milea D, Chen CL, Wong TY (2022) A deep learning model for detection of Alzheimer’s disease based on retinal photographs: a retrospective, multicentre case-control study. Lancet Digit Health 4:e806–e815. https://doi.org/10.1016/s2589-7500(22)00169-8

    Article  CAS  PubMed  Google Scholar 

  57. Tian J, Smith G, Guo H, Liu B, Pan Z, Wang Z, Xiong S, Fang R (2021) Modular machine learning for Alzheimer’s disease classification from retinal vasculature. Sci Rep 11:238. https://doi.org/10.1038/s41598-020-80312-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Corbin D, Lesage F (2022) Assessment of the predictive potential of cognitive scores from retinal images and retinal fundus metadata via deep learning using the CLSA database. Sci Rep 12:5767. https://doi.org/10.1038/s41598-022-09719-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Wang X, Jiao B, Liu H, Wang Y, Hao X, Zhu Y, Xu B, Xu H, Zhang S, Jia X, Xu Q, Liao X, Zhou Y, Jiang H, Wang J, Guo J, Yan X, Tang B, Zhao R, Shen L (2022) Machine learning based on Optical Coherence Tomography images as a diagnostic tool for Alzheimer’s disease. CNS Neurosci Ther 28:2206–2217. https://doi.org/10.1111/cns.13963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang Q, Li J, Bian M, He Q, Shen Y, Lan Y, Huang D (2021) Retinal Imaging Techniques Based on Machine Learning Models in Recognition and Prediction of Mild Cognitive Impairment. Neuropsychiatr Dis Treat 17:3267–3281. https://doi.org/10.2147/ndt.S333833

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wisely CE, Wang D, Henao R, Grewal DS, Thompson AC, Robbins CB, Yoon SP, Soundararajan S, Polascik BW, Burke JR, Liu A, Carin L, Fekrat S (2022) Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging. Br J Ophthalmol 106:388–395. https://doi.org/10.1136/bjophthalmol-2020-317659

    Article  PubMed  Google Scholar 

  62. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12:e1001779. https://doi.org/10.1371/journal.pmed.1001779

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chua SYL, Thomas D, Allen N, Lotery A, Desai P, Patel P, Muthy Z, Sudlow C, Peto T, Khaw PT, Foster PJ (2019) Cohort profile: design and methods in the eye and vision consortium of UK Biobank. BMJ Open 9:e025077. https://doi.org/10.1136/bmjopen-2018-025077

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ma Y, Hao H, Xie J, Fu H, Zhang J, Yang J, Wang Z, Liu J, Zheng Y, Zhao Y (2021) ROSE: a retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans Med Imaging 40:928–939. https://doi.org/10.1109/tmi.2020.3042802

    Article  PubMed  Google Scholar 

  65. Weber CJ, Carrillo MC, Jagust W, Jack CR Jr, Shaw LM, Trojanowski JQ, Saykin AJ, Beckett LA, Sur C, Rao NP, Mendez PC, Black SE, Li K, Iwatsubo T, Chang CC, Sosa AL, Rowe CC, Perrin RJ, Morris JC, Healan AMB, Hall SE, Weiner MW (2021) The worldwide Alzheimer’s disease neuroimaging initiative: ADNI-3 updates and global perspectives. Alzheimers Dement (N Y) 7:e12226. https://doi.org/10.1002/trc2.12226

    Article  PubMed  Google Scholar 

  66. Raza N, Naseer A, Tamoor M, Zafar K (2023) Alzheimer Disease classification through transfer learning approach. Diagnostics (Basel) 13 https://doi.org/10.3390/diagnostics13040801

  67. Yu JG, Feng YF, Xiang Y, Huang JH, Savini G, Parisi V, Yang WJ, Fu XA (2014) Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS One 9:e85718. https://doi.org/10.1371/journal.pone.0085718

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Alves JN, Westner BU, Højlund A, Weil RS, Dalal SS (2023) Structural and functional changes in the retina in Parkinson’s disease. J Neurol Neurosurg Psychiatry 94:448–456. https://doi.org/10.1136/jnnp-2022-329342

    Article  PubMed  Google Scholar 

  69. Robbins CB, Thompson AC, Bhullar PK, Koo HY, Agrawal R, Soundararajan S, Yoon SP, Polascik BW, Scott BL, Grewal DS, Fekrat S (2021) Characterization of retinal microvascular and choroidal structural changes in Parkinson disease. JAMA Ophthalmol 139:182–188. https://doi.org/10.1001/jamaophthalmol.2020.5730

    Article  PubMed  Google Scholar 

  70. Lustig-Barzelay Y, Sher I, Sharvit-Ginon I, Feldman Y, Mrejen M, Dallasheh S, Livny A, Schnaider Beeri M, Weller A, Ravona-Springer R, Rotenstreich Y (2022) Machine learning for comprehensive prediction of high risk for Alzheimer’s disease based on chromatic pupilloperimetry. Sci Rep 12:9945. https://doi.org/10.1038/s41598-022-13999-0

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AJav and AJaf conceptualized the manuscript. HA and AJaf conducted a literature review and drafted the manuscript. AJav, MY, and FF provided comments and revised the manuscript. MY created and designed all figures. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Alireza Javadzadeh.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants performed by any of the authors.

Consent for publication

N/A.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashayeri, H., Jafarizadeh, A., Yousefi, M. et al. Retinal imaging and Alzheimer’s disease: a future powered by Artificial Intelligence. Graefes Arch Clin Exp Ophthalmol (2024). https://doi.org/10.1007/s00417-024-06394-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00417-024-06394-0

Keywords

Navigation