Skip to main content

Advertisement

Log in

Refractive associations with corneal biomechanical properties among young adults: a population-based Corvis ST study

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the associations of corneal biomechanical properties as measured by the Corvis ST with refractive errors and ocular biometry in an unselected sample of young adults.

Methods

A total of 1645 healthy university students underwent corneal biomechanical parameters measurement by the Corvis ST. The refractive status of the participants was measured using an autorefractor without cycloplegia. Ocular biometric parameters were measured using the IOL Master.

Results

After adjusting for the effect of age, sex, biomechanical-corrected intraocular pressure and central corneal thickness, axial length was significantly associated with A1 velocity (A1v, β = -10.47), A2 velocity (A2v, β = 4.66), A2 deflection amplitude (A2DeflA, β = -6.02), HC deflection amplitude (HC-DeflA, β = 5.95), HC peak distance (HC-PD, β = 2.57), deformation amplitude ratio max (DA Rmax, β = -0.36), Ambrósio′s relational thickness to the horizontal profile (ARTh, β = 0.002). For axial length / corneal radius ratio, only A1v (β = -2.01), A1 deflection amplitude (A1DeflA, β = 2.30), HC-DeflA (β = 1.49), HC-PD (β = -0.21), DA Rmax (β = 0.07), stress–strain index (SSI, β = -0.29), ARTh (β < 0.001) were significant associates. A1v (β = 23.18), HC-DeflA (β = -15.36), HC-PD (β = 1.27), DA Rmax (β = -0.66), SSI (β = 3.53), ARTh (β = -0.02) were significantly associated with spherical equivalent.

Conclusion

Myopic eyes were more likely to have more deformable corneas and corneas in high myopia were easier to deform and were even softer compared with those in the mild/moderate myopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are not publicly available, but are available from the corresponding author on reasonable request.

References

  1. Bao F, Lopes BT, Zheng X et al (2023) Corneal biomechanics losses caused by refractive Surgery. Curr Eye Res 48:137–143

  2. Prokopczyk G, Adams JD, LaVoie EJ et al (1987) Effect of snuff and nicotine on DNA methylation by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 8:1395–1397

    Article  CAS  PubMed  Google Scholar 

  3. Sedaghat MR, Momeni-Moghaddam H, Heravian J et al (2022) Detection ability of corneal biomechanical parameters for early diagnosis of ectasia. Eye (Lond) 37:1665–1672

    Article  PubMed  Google Scholar 

  4. Flockerzi E, Xanthopoulou K, Daas L et al (2022) Evaluation of Dynamic Corneal Response Parameters and the Biomechanical E-Staging After Accelerated Corneal Cross-Linking in Keratoconus. Asia Pac J Ophthalmol (Phila) 11:514–520

    Article  PubMed  Google Scholar 

  5. Xanthopoulou K, Seitz B, Belin MW et al (2022) Reliability analysis of successive Corvis ST(R) measurements in keratoconus 2 years after accelerated corneal crosslinking compared to untreated keratoconus corneas. Graefes Arch Clin Exp Ophthalmol 261:1055–1061

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lim L, Gazzard G, Chan YH et al (2008) Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children. Invest Ophthalmol Vis Sci 49:3852–3857

    Article  PubMed  Google Scholar 

  7. Momeni-Moghaddam H, Hashemi H, Zarei-Ghanavati S et al (2019) Four-year changes in corneal biomechanical properties in children. Clin Exp Optom 102:489–495

    Article  PubMed  Google Scholar 

  8. Inceoglu N, Emre S, Ulusoy MO (2018) Investigation of corneal biomechanics at moderate to high refractive errors. Int Ophthalmol 38:1061–1067

    Article  PubMed  Google Scholar 

  9. Hon Y, Chen GZ, Lu SH et al (2017) High myopes have lower normalised corneal tangent moduli (less “stiff” corneas) than low myopes. Ophthalmic Physiol Opt 37:42–50

    Article  PubMed  Google Scholar 

  10. Wu W, Dou R, Wang Y (2019) Comparison of corneal biomechanics between low and high myopic eyes-a Meta-analysis. Am J Ophthalmol 207:419–425

    Article  PubMed  Google Scholar 

  11. Chong J, Dupps WJ (2021) Corneal biomechanics: Measurement and structural correlations. Exp Eye Res 205:108508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee R, Chang RT, Wong IY et al (2016) Assessment of corneal biomechanical parameters in myopes and emmetropes using the Corvis ST. Clin Exp Optom 99:157–162

    Article  PubMed  Google Scholar 

  13. Kenia VP, Kenia RV, Pirdankar OH (2020) Association between corneal biomechanical parameters and myopic refractive errors in young Indian individuals. Taiwan J Ophthalmol 10:45–53

    Article  PubMed  PubMed Central  Google Scholar 

  14. Han F, Li M, Wei P et al (2020) Effect of biomechanical properties on myopia: a study of new corneal biomechanical parameters. BMC Ophthalmol 20:459

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chu Z, Ren Q, Chen M et al (2022) The relationship between axial length/corneal radius of curvature ratio and stress-strain index in myopic eyeballs: Using Corvis ST tonometry. Front Bioeng Biotechnol 10:939129

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao R, Ren Y, Li S et al (2022) Assessment of corneal biomechanics in anisometropia using Scheimpflug technology. Front Bioeng Biotechnol 10:994353

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vinciguerra R, Herber R, Wang Y et al (2022) Corneal biomechanics differences between Chinese and Caucasian healthy subjects. Front Med (Lausanne) 9:834663

    Article  PubMed  Google Scholar 

  18. Dong XX, Liang G, Li DL et al (2022) Association between parental control and depressive symptoms among college freshmen in China: The chain mediating role of chronotype and sleep quality. J Affect Disord 317:256–264

    Article  PubMed  Google Scholar 

  19. Pan CW, Wong TY, Chang L et al (2011) Ocular biometry in an urban Indian population: the Singapore Indian Eye Study (SINDI). Invest Ophthalmol Vis Sci 52:6636–6642

    Article  PubMed  Google Scholar 

  20. Nemeth G, Hassan Z, Csutak A et al (2013) Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J Refract Surg 29:558–563

    Article  PubMed  Google Scholar 

  21. Terai N, Raiskup F, Haustein M et al (2012) Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res 37:553–562

    Article  PubMed  Google Scholar 

  22. Lu LL, Hu XJ, Yang Y et al (2022) Correlation of myopia onset and progression with corneal biomechanical parameters in children. World J Clin Cases 10:1548–1556

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sedaghat MR, Momeni-Moghaddam H, Azimi A et al (2020) Corneal biomechanical properties in varying severities of myopia. Front Bioeng Biotechnol 8:595330

    Article  PubMed  Google Scholar 

  24. Liu Y, Pang C, Ming S et al (2022) Effect of myopia and astigmatism deepening on the corneal biomechanical parameter stress-strain index in individuals of Chinese ethnicity. Front Bioeng Biotechnol 10:1018653

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu G, Rong H, Zhang P et al (2021) The effect of axial length elongation on corneal biomechanical property. Front Bioeng Biotechnol 9:777239

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang J, Li Y, Jin Y et al (2015) Corneal biomechanical properties in myopic eyes measured by a Dynamic Scheimpflug Analyzer. J Ophthalmol 2015:161869

    Article  PubMed  PubMed Central  Google Scholar 

  27. He M, Wang W, Ding H et al (2017) Corneal biomechanical properties in high myopia measured by Dynamic Scheimpflug imaging technology. Optom Vis Sci 94:1074–1080

    Article  PubMed  Google Scholar 

  28. Long W, Zhao Y, Hu Y et al (2019) Characteristics of corneal biomechanics in Chinese preschool children with different refractive status. Cornea 38:1395–1399

    Article  PubMed  Google Scholar 

  29. Vinciguerra R, Ambrosio RJ, Elsheikh A et al (2016) Detection of keratoconus with a new biomechanical index. J Refract Surg 32:803–810

    Article  PubMed  Google Scholar 

  30. Cevik SG, Kivanc SA, Akova-Budak B et al (2016) Relationship among corneal biomechanics, anterior segment parameters, and geometric corneal parameters. J Ophthalmol 2016:8418613

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ma J, Wang Y, Hao W et al (2020) Comparative analysis of biomechanically corrected intraocular pressure with corneal visualization Scheimpflug technology versus conventional noncontact intraocular pressure. Int Ophthalmol 40:117–124

    Article  PubMed  Google Scholar 

  32. Xu H, Zong Y, Zhai R et al (2019) Intereye and intraeye asymmetry analysis of retinal microvascular and neural structure parameters for diagnosis of primary open-angle glaucoma. Eye (Lond) 33:1596–1605

    Article  PubMed  Google Scholar 

  33. Ma J, Wang Y, Li M et al (2021) Association between severity of myopia and deformation characteristics of the cornea based on propensity score matching analysis. J Refract Surg 37:344–350

    Article  PubMed  Google Scholar 

  34. Kang BS, Wang LK, Zheng YP et al (2018) High myopia induced by form deprivation is associated with altered corneal biomechanical properties in chicks. Plos One 13:e207189

    Article  Google Scholar 

Download references

Acknowledgements

We frankly thank all participants and the schools involved in the survey, as well as other staff members on the scene.

Funding

The research was funded by the National Natural Science Foundation of China (Grant No. 82160204).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Chen-Wei Pan]; Methodology: [Dan-Lin Li]; Formal analysis: [Dan-Lin Li]; Investigation: [Dan-Lin Li], [Min-Xin Liu], [Zhi-Jian Yin], [Yue-Zu Li], [Rong Ma], [Gang Liang]; Writing—original draft preparation: [Dan-Lin Li]; Writing—review and editing: [Chen-Wei Pan]; Funding acquisition: [Gang Liang]; Resources: [Zhi-Jian Yin], [Gang Liang], [Chen-Wei Pan]; Supervision: [Chen-Wei Pan]. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gang Liang or Chen-Wei Pan.

Ethics declarations

Ethical approval

The study was conducted in accordance with the Declaration of Helsinki, and ethics committee approval was obtained from the Affiliated Hospital of Yunnan University (22 Feb. 2021; approval number 2021040).

Conflicts of interest

None of the authors has any conflicts of interest to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DL., Liu, MX., Yin, ZJ. et al. Refractive associations with corneal biomechanical properties among young adults: a population-based Corvis ST study. Graefes Arch Clin Exp Ophthalmol 262, 121–132 (2024). https://doi.org/10.1007/s00417-023-06164-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06164-4

Keywords

Navigation