Skip to main content

Advertisement

Log in

Influence of a multifocal intraocular lens centration and eye angles on light distortion and ocular scatter index

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess how eye axes and multifocal intraocular lens (MIOL) centration may impact the light distortion index (LDI) and ocular scatter index (OSI).

Methods

Fifty-eight subjects implanted with the trifocal MIOL Q-Flex M 640PM or Liberty 677MY (Medicontur) were included in this retrospective analysis. The following variables were collected with the Pentacam Wave (Oculus) considering the vertex normal as the coordinates center: chord-mu to the center of the pupil, chord-alpha to the geometrical center of the cornea, and chord-MIOL to the center of the diffractive ring. These measurements were correlated with OSI (HD Analyzer, Visiometrics) and LDI (light distortion analyzer, CEORLab).

Results

Chord-MIOL centroid was 0.12 mm at 62°, chord-mu was 0.09 mm at 174°, and chord-alpha was 0.38 mm at 188°. A relationship was found between OSI and LDI, rho = 0.58, p < 0.0005). No relationships were found between chord-mu or chord-alpha and the LDI or OSI, neither for the total magnitude, nor the decomposition in orthogonal components (p > 0.05). The LDI was significantly correlated with the temporal centration of the MIOL versus the vertex normal (rho = 0.32, p = 0.02).

Conclusions

As opposed to what has been previously described, the temporal centration of the MIOL was related to a decrease in the LDI. Future studies with extreme values of the included variables are required to establish cut-offs for considering these variables as exclusion criteria in the implantation of a MIOL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fernández J, Rodríguez-Vallejo M, Martínez J et al (2021) What we have learnt from 30 years living with positive dysphotopsia after intraocular lens implantation?: a review. Expert Rev Ophthalmol 16:1–10. https://doi.org/10.1080/17469899.2021.1917997

    Article  CAS  Google Scholar 

  2. Kim EC, Na K-S, Kim HS, Hwang HS (2020) How does the world appear to patients with multifocal intraocular lenses?: a mobile model eye experiment. Bmc Ophthalmol 20:180. https://doi.org/10.1186/s12886-020-01446-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alba-Bueno F, Vega F, Millán MS (2014) Halos y lentes intraoculares multifocales: origen e interpretación. Arch Soc Esp Oftalmol 89:397–404. https://doi.org/10.1016/j.oftal.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  4. Alba-Bueno F, Garzón N, Vega F et al (2017) Patient-perceived and laboratory-measured halos associated with diffractive bifocal and trifocal intraocular lenses. Curr Eye Res 43:1–8. https://doi.org/10.1080/02713683.2017.1379541

    Article  Google Scholar 

  5. Fernández J, Rodríguez-Vallejo M, Martínez J et al (2021) Long-term efficacy, visual performance and patient reported outcomes with a trifocal intraocular lens: a six-year follow-up. J Clin Medicine 10:2009. https://doi.org/10.3390/jcm10092009

    Article  CAS  Google Scholar 

  6. Mendicute J, Kapp A, Lévy P et al (2016) Evaluation of visual outcomes and patient satisfaction after implantation of a diffractive trifocal intraocular lens. J Cataract Refract Surg 42:203–210. https://doi.org/10.1016/j.jcrs.2015.11.037

    Article  PubMed  Google Scholar 

  7. Liu X, Xie L, Huang Y (2018) Comparison of the visual performance after implantation of bifocal and trifocal intraocular lenses having an identical platform. J Refract Surg 34:273–280. https://doi.org/10.3928/1081597x-20180214-01

    Article  PubMed  Google Scholar 

  8. Győry JF, Srinivasan S, Madár E, Balla L (2021) Long-term performance of a diffractive–refractive trifocal IOL with centralized diffractive rings: 5-year prospective clinical trial. J Cataract Refr Surg 47:1258–1264. https://doi.org/10.1097/j.jcrs.0000000000000670

    Article  Google Scholar 

  9. Ison M, Scott J, Apel J, Apel A (2021) Patient expectation, satisfaction and clinical outcomes with a new multifocal intraocular lens. Clin Ophthalmol 15:4131–4140. https://doi.org/10.2147/opth.s327424

    Article  PubMed  PubMed Central  Google Scholar 

  10. Modi S, Lehmann R, Maxwell A et al (2021) Visual and patient-reported outcomes of a diffractive trifocal intraocular lens compared with those of a monofocal intraocular lens. Ophthalmology 128:197–207. https://doi.org/10.1016/j.ophtha.2020.07.015

    Article  PubMed  Google Scholar 

  11. Monaco G, Gari M, Censo FD et al (2017) Visual performance after bilateral implantation of 2 new presbyopia-correcting intraocular lenses: trifocal versus extended range of vision. J Cataract Refract Surg 43:737–747. https://doi.org/10.1016/j.jcrs.2017.03.037

    Article  PubMed  Google Scholar 

  12. Negishi K, Hayashi K, Kamiya K et al (2019) Nationwide prospective cohort study on cataract surgery with multifocal intraocular lens implantation in Japan. Am J Ophthalmol 208:133–144. https://doi.org/10.1016/j.ajo.2019.07.019

    Article  PubMed  Google Scholar 

  13. Woodward MA, Randleman JB, Stulting RD (2009) Dissatisfaction after multifocal intraocular lens implantation. J Cataract Refract Surg 35:992–997. https://doi.org/10.1016/j.jcrs.2009.01.031

    Article  PubMed  PubMed Central  Google Scholar 

  14. de Vries NE, Webers CAB, Touwslager WRH et al (2011) Dissatisfaction after implantation of multifocal intraocular lenses. J Cataract Refract Surg 37:859–865. https://doi.org/10.1016/j.jcrs.2010.11.032

    Article  PubMed  Google Scholar 

  15. Espaillat A, Coelho C, Batista MJM, Perez O (2021) Predictors of photic phenomena with a trifocal IOL. Clin Ophthalmol Auckl N Z 15:495–503. https://doi.org/10.2147/opth.s282469

    Article  Google Scholar 

  16. Karhanová M, Marešová K, Pluháček F et al (2013) The importance of angle kappa for centration of multifocal intraocular lenses. Cesk Slov Oftalmol 69:64–68

    PubMed  Google Scholar 

  17. Prakash G, Prakash DR, Agarwal A et al (2011) Predictive factor and kappa angle analysis for visual satisfactions in patients with multifocal IOL implantation. Eye 25:1187–1193. https://doi.org/10.1038/eye.2011.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holladay JT (2019) Apparent chord mu and actual chord mu and their clinical value. J Cataract Refract Surg 45:1198–1199. https://doi.org/10.1016/j.jcrs.2019.03.029

    Article  PubMed  Google Scholar 

  19. Rodríguez-Vallejo M, Piñero DP, Fernández J (2018) Avoiding misinterpretations of kappa angle for clinical research studies with Pentacam. J Optometry 12:71–73. https://doi.org/10.1016/j.optom.2018.03.003

    Article  Google Scholar 

  20. Fernández J, Rodríguez-Vallejo M, Martínez J et al (2019) Prediction of visual acuity and contrast sensitivity from optical simulations with multifocal intraocular lenses. J Refract Surg 35:789–795. https://doi.org/10.3928/1081597x-20191024-01

    Article  PubMed  Google Scholar 

  21. Artal P, Benito A, Pérez GM et al (2011) An objective scatter index based on double-pass retinal images of a point source to classify cataracts. Plos One 6:e16823. https://doi.org/10.1371/journal.pone.0016823.g002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kohnen T, Suryakumar R (2021) Measures of visual disturbance in patients receiving extended depth-of-focus or trifocal intraocular lenses. J Cataract Refr Surg 47:245–255. https://doi.org/10.1097/j.jcrs.0000000000000364

    Article  Google Scholar 

  23. Ferreira-Neves H, Macedo-de-Araújo R, Rico-del-Viejo L et al (2015) Validation of a method to measure light distortion surrounding a source of glare. J Biomed Opt 20:075002–075002. https://doi.org/10.1117/1.jbo.20.7.075002

    Article  Google Scholar 

  24. Armstrong RA (2013) Statistical guidelines for the analysis of data obtained from one or both eyes. Ophthal Physl Opt 33:7–14. https://doi.org/10.1111/opo.12009

    Article  Google Scholar 

  25. Qi Y, Lin J, Leng L et al (2018) Role of angle κ in visual quality in patients with a trifocal diffractive intraocular lens. J Cataract Refract Surg 44:949–954. https://doi.org/10.1016/j.jcrs.2018.05.026

    Article  PubMed  Google Scholar 

  26. Cervantes-Coste G, Tapia A, Corredor-Ortega C et al (2022) The influence of angle alpha, angle kappa, and optical aberrations on visual outcomes after the implantation of a high-addition trifocal IOL. J Clin Medicine 11:896. https://doi.org/10.3390/jcm11030896

    Article  Google Scholar 

  27. Garzón N, García-Montero M, López-Artero E et al (2020) Influence of angle κ on visual and refractive outcomes after implantation of a diffractive trifocal intraocular lens. J Cataract Refr Surg 46:721–727. https://doi.org/10.1097/j.jcrs.0000000000000156

    Article  Google Scholar 

  28. Fernández J, Rodríguez-Vallejo M, Martínez J et al (2018) Biometric factors associated with the visual performance of a high addition multifocal intraocular lens. Curr Eye Res 43:998–1005. https://doi.org/10.1080/02713683.2018.1478981

    Article  PubMed  Google Scholar 

  29. Luo J, Liu Y, Wang F et al (2021) Effect of the kappa angle on depth of focus after implantation of the TECNIS Symfony intraocular lens. Int Ophthalmol 41:2513–2520. https://doi.org/10.1007/s10792-021-01809-x

    Article  PubMed  Google Scholar 

  30. Fu Y, Kou J, Chen D et al (2019) Influence of angle kappa and angle alpha on visual quality after implantation of multifocal intraocular lenses. J Cataract Refract Surg 45:1258–1264. https://doi.org/10.1016/j.jcrs.2019.04.003

    Article  PubMed  Google Scholar 

  31. Fernández J, Rodríguez-Vallejo M, Martínez J et al (2018) From presbyopia to cataracts: a critical review on dysfunctional lens syndrome. J Ophthalmol 2018:1–10. https://doi.org/10.1155/2018/4318405

    Article  Google Scholar 

  32. Wang R, Long T, Gu X, Ma T (2020) Changes in angle kappa and angle alpha before and after cataract surgery. J Cataract Refr Surg 46:365–371. https://doi.org/10.1097/j.jcrs.0000000000000063

    Article  Google Scholar 

  33. Fernández J, Rodríguez-Vallejo M, Martínez J et al (2020) Pupil diameter in patients with multifocal intraocular lenses. J Refract Surg 36:750–756. https://doi.org/10.3928/1081597x-20200813-01

    Article  PubMed  Google Scholar 

  34. Qin M, Ji M, Zhou T et al (2022) Influence of angle alpha on visual quality after implantation of extended depth of focus intraocular lenses. Bmc Ophthalmol 22:82. https://doi.org/10.1186/s12886-022-02302-4

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hashemi H, KhabazKhoob M, Yazdani K et al (2010) Distribution of angle kappa measurements with orbscan II in a population-based survey. J Refract Surg 26:966–971. https://doi.org/10.3928/1081597x-20100114-06

    Article  PubMed  Google Scholar 

  36. Reinstein DZ, Archer TJ, Rowe EL et al (2021) Distribution of pupil offset and angle kappa in a refractive surgery preoperative population of 750 myopic, emmetropic, and hyperopic eyes. J Refract Surg 37:49–58. https://doi.org/10.3928/1081597x-20201109-01

    Article  PubMed  Google Scholar 

  37. Wang L, de Souza RG, Weikert MP, Koch DD (2019) Evaluation of crystalline lens and intraocular lens tilt using a swept-source optical coherence tomography biometer. J Cataract Refract Surg 45:35–40. https://doi.org/10.1016/j.jcrs.2018.08.025

    Article  CAS  PubMed  Google Scholar 

  38. Fernández J, Rodríguez-Vallejo M, Martínez J et al (2020) Patient selection to optimize near vision performance with a low-addition trifocal lens. J Optometry 13:50–58. https://doi.org/10.1016/j.optom.2019.06.003

    Article  Google Scholar 

  39. Tandogan T, Son HS, Choi CY et al (2017) Laboratory evaluation of the influence of decentration and pupil size on the optical performance of a monofocal, bifocal, and trifocal intraocular lens. J Refract Surg 33:808–812. https://doi.org/10.3928/1081597x-20171004-02

    Article  PubMed  Google Scholar 

  40. Kimura S, Morizane Y, Shiode Y et al (2017) Assessment of tilt and decentration of crystalline lens and intraocular lens relative to the corneal topographic axis using anterior segment optical coherence tomography. Plos One 12:e0184066. https://doi.org/10.1371/journal.pone.0184066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fernández J, Burguera N, Rocha-de-Lossada C et al (2022) A new approach for detecting patients complaining of dysphotopsia after multifocal intraocular lens implantation due to non-optical reasons. In: 26th ESCRS Winter Meeting, Portugal. Available at: https://wintermeeting.2022.escrs.org/programme/. Accessed 5 March 2023

  42. Mahr MA, Simpson MJ, Erie JC (2020) Angle alpha orientation and magnitude distribution in a cataract surgery population. J Cataract Refr Surg 46:372–377. https://doi.org/10.1097/j.jcrs.0000000000000066

    Article  Google Scholar 

  43. Meng J, Du Y, Wei L et al (2021) Distribution of angle α and angle κ in a population with cataract in Shanghai. J Cataract Refr Surg 47:579–584. https://doi.org/10.1097/j.jcrs.0000000000000490

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Rodríguez-Vallejo.

Ethics declarations

Ethical approval

This study was approved by the Ethics Committee of Research, Almería Center, Torrecárdenas Hospital Complex, and conducted in adherence with the tenets of the Declaration of Helsinki. For this type of study, formal consent is not required.

Conflict of interest

Dr. Fernández is a consultant to Medicontur. The remaining authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, J., Burguera, N., Rocha-de-Lossada, C. et al. Influence of a multifocal intraocular lens centration and eye angles on light distortion and ocular scatter index. Graefes Arch Clin Exp Ophthalmol 261, 2291–2299 (2023). https://doi.org/10.1007/s00417-023-06028-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06028-x

Keywords

Navigation