Skip to main content

Advertisement

Log in

Intrinsic differences in rod and cone membrane composition: implications for cone degeneration

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

In many retinal pathological conditions, rod and cone degeneration differs. For example, the early-onset maculopathy Stargardts disease type 1 (STGD1) is typified by loss of cones while rods are often less affected. We wanted to examine whether there exist intrinsic membrane differences between rods and cones that might explain such features.

Methods

Abca4 mRNA and protein levels were quantified in rod- and cone-enriched samples from wild-type and Nrl−/− mice retinas; rod- and cone-enriched outer segments (ROS and COS respectively) were prepared from pig retinas, and total lipids were analyzed by flame ionization, chromatography, and tandem mass spectrometry. Immunohistochemical staining of cone-rich rodent Arvicanthis ansorgei retinas was conducted, and ultra-high performance liquid chromatography of lipid species in porcine ROS and COS was performed.

Results

Abca4 mRNA and Abca4 protein content was significantly higher (50–300%) in cone compared to rod-enriched samples. ROS and COS displayed dramatic differences in several lipids, including very long chain poly-unsaturated fatty acids (VLC-PUFAs), especially docosahexaenoic acid (DHA, 22:6n-3): ROS 20.6% DHA, COS 3.3% (p < 0.001). VLC-PUFAs (> 50 total carbons) were virtually absent from COS. COS were impoverished (> 6× less) in phosphatidylethanolamine compared to ROS. ELOVL4 (“ELOngation of Very Long chain fatty acids 4”) antibody labelled Arvicanthis cones only very weakly compared to rods. Finally, there were large amounts (905 a.u.) of the bisretinoid A2PE in ROS, whereas it was much lower (121 a.u., ~ 7.5-fold less) in COS fractions. In contrast, COS contained fivefold higher amounts of all-trans-retinal dimer (115 a.u. compared to 22 a.u. in rods).

Conclusions

Compared to rods, cones expressed higher levels of Abca4 mRNA and Abca4 protein, were highly impoverished in PUFA (especially DHA) and phosphatidylethanolamine, and contained significant amounts of all-trans-retinal dimer. Based on these and other data, we propose that in contrast to rods, cones are preferentially vulnerable to stress and may die through direct cellular toxicity in pathologies such as STGD1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baylor DA (1987) Photoreceptor signals and vision. Proctor lecture. Invest Ophthalmol Vis Sci 2:34–49

    Google Scholar 

  2. Allikmets R (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 17:122

    CAS  PubMed  Google Scholar 

  3. Fujinami K, Lois N, Davidson AE et al (2013) A longitudinal study of Stargardt Disease: clinical and electrophysiologic assessment, progression, and genotype correlations. Am J Ophthalmol 155:1075–88

    Article  PubMed  Google Scholar 

  4. Rotenstreich Y, Fishman GA, Anderson RJ (2003) Visual acuity loss and clinical observations in a large series of patients with Stargardt disease. Ophthalmology 110:1151–8

    Article  PubMed  Google Scholar 

  5. Gomes NL, Greenstein VC, Carlson JN, Tsang SH, Smith RT, Carr RE, Hood DC, Chang S (2009) A comparison of fundus autofluorescence and retinal structure in patients with Stargardt disease. Invest Ophthalmol Vis Sci 50:3907–14

    Article  PubMed  Google Scholar 

  6. Molday LL, Rabin AR, Molday RS (2000) ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat Genet 25:257–8

    Article  CAS  PubMed  Google Scholar 

  7. Cideciyan AV, Hood DC, Huang Y, Banin E, Li ZY, Stone EM, Milam AH, Jacobson SG (1998) Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. Proc Natl Acad Sci USA 95:7103–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dubis AM, Hansen BR, Cooper RF, Beringer J, Dubra A, Carroll J (2012) Relationship between the foveal avascular zone and foveal pit morphology. Invest Ophthalmol Vis Sci 53:1628–36

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chong NH, Keonin J, Luthert PJ, Frennesson CI, Weingeist DM, Wolf RL, Mullins RF, Hageman GS (2005) Decreased thickness and integrity of the macular elastic layer of Bruch’s membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol 166:241–51

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mainster MA (1987) Light and macular degeneration: a biophysical and clinical perspective. Eye 1:304–10

    Article  PubMed  Google Scholar 

  11. Curcio CA, Sloan KR Jr, Packer O, Hendrickson AE, Kalina RE (1987) Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236:579–82

    Article  CAS  PubMed  Google Scholar 

  12. Cideciyan AV, Swider M, Aleman TS, Sumaroka A, Schwartz SB, Roman MI, Milam AH, Bennett J, Stone EM, Jacobson SG (2005) ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. Invest Ophthalmol Vis Sci 46:4739–46

    Article  PubMed  Google Scholar 

  13. Burke TR, Fishman GA, Zernant J et al (2012) Retinal phenotypes in patients homozygous for the G1961E mutation in the ABCA4 gene. Invest Ophthalmol Vis Sci 53:4458–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burke TR, Duncker T, Woods RL et al (2014) Quantitative fundus autofluorescence in recessive Stargardt disease. Invest Ophthalmol Vis Sci 55:2841–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23

    Article  CAS  PubMed  Google Scholar 

  16. Kim SR, Fishkin N, Kong J, Nakanishi K, Allikmets R, Sparrow JR (2004) Rpe65 Leu450Met variant is associated with reduced levels of the retinal pigment epithelium lipofuscin fluorophores A2E and iso-A2E. Proc Natl Acad Sci U S A 101:11668–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, Zhou J (2012) The Bisretinoids of Retinal Pigment Epithelium. Prog Retin Eye Res 31:121–35

    Article  CAS  PubMed  Google Scholar 

  18. Beharry S, Zhong M, Molday RS (2004) N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem 279:53972–9

    Article  CAS  PubMed  Google Scholar 

  19. Kim HJ, Sparrow JR (2021) Bisretinoid phospholipid and vitamin A aldehyde: shining a light. J Lipid Res 62:100042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sparrow JR, Marsiglia M, Allikmets R, Tsang S, Lee W, Duncker T, Zernant J (2015) Flecks in recessive Stargardt disease: short-wavelength autofluorescence, near-infrared autofluorescence, and optical coherence tomography. Invest Ophthalmol Vis Sci 56:5029–39

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fakin A, Robson AG, Fujinami K, Moore AT, Michaelides M, Pei-Wen Chiang J, Holder GE, Webster AR (2016) Phenotype and progression of retinal degeneration associated with nullizigosity of ABCA4. Invest Ophthalmol Vis Sci. 57:4668–78

    Article  CAS  PubMed  Google Scholar 

  22. Conley SM, Cai X, Makkia R, Wu Y, Sparrow JR, Naash MI (2012) Increased cone sensitivity to ABCA4 deficiency provides insight into macular vision loss in Stargardt’s dystrophy. Biochim Biophys Acta 1822:1169–79

    Article  CAS  PubMed  Google Scholar 

  23. Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, Sieving PA, Swaroop A (2001) Nrl is required for rod photoreceptor development. Nat Genet 29:447–52

    Article  CAS  PubMed  Google Scholar 

  24. Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sandu C, Hicks D, Felder-Schmittbuhl MP (2011) Rat photoreceptor circadian oscillator strongly relies on lighting conditions. Eur J Neurosci 34:507–16

    Article  PubMed  Google Scholar 

  26. Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sc 28:50–61

    CAS  Google Scholar 

  27. Bascom RA, Manara S, Collins L, Molday RS, Kalnins VI, McInnes RR (1992) Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies. Neuron 8:1171–84

    Article  CAS  PubMed  Google Scholar 

  28. Papermaster DS (1982) Preparation of retinal rod outer segments. Methods Enzymol 81:48–52

    Article  CAS  PubMed  Google Scholar 

  29. Poincelot RP, Abrahamson EW (1970) Fatty acid composition of bovine rod outer segments and rhodopsin. Biochim Biophys Acta 202:382–5

    Article  CAS  PubMed  Google Scholar 

  30. Kwok MC, Holopainen JM, Molday LL, Foster LJ, Molday RS (2008) Proteomics of photoreceptor outer segments identifies a subset of SNARE and Rab proteins implicated in membrane vesicle trafficking and fusion. Mol Cell Proteomics 7:1053–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jonas JB, Schneider U, Naumann GO (1992) Count and density of human retinal photoreceptors. Graefes Arch Clin Exp Ophthalmol 230:505–10

    Article  CAS  PubMed  Google Scholar 

  32. Johnson LV, Hageman GS, Blanks JC (1985) Restricted extracellular matrix domains ensheath cone photoreceptors in vertebrate retinae. Prog Clin Biol Res 190:33–44

    CAS  PubMed  Google Scholar 

  33. Hendrickson A, Hicks D (2002) Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. Exp Eye Res 74:435–44

    Article  CAS  PubMed  Google Scholar 

  34. Hicks D, Molday RS (1986) Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin. Exp Eye Res 42:55–71

    Article  CAS  PubMed  Google Scholar 

  35. Roberts MR, Hendrickson A, McGuire CR, Reh TA (2005) Retinoid X receptor (gamma) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina. Invest Ophthalmol Vis Sci 46:2897–904

    Article  PubMed  Google Scholar 

  36. Acar N, Berdeaux O, Grégoire S et al (2012) Lipid composition of the human eye: are red blood cells a good mirror of retinal and optic nerve fatty acids? PLoS One 7:e35102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berdeaux O, Juaneda P, Martine L, Cabaret S, Bretillon L, Acar N (2010) Identification and quantification of phosphatidylcholines containing very-long-chain polyunsaturated fatty acid in bovine and human retina using liquid chromatography/tandem mass spectrometry. J Chromatogr A 1217:7738–48

    Article  CAS  PubMed  Google Scholar 

  38. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  39. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J Lipid Res 53:600–608

    Article  Google Scholar 

  40. Bobu C, Craft CM, Masson-Pevet M, Hicks D (2006) Photoreceptor organization and rhythmic phagocytosis in the nile rat Arvicanthis ansorgei: a novel diurnal rodent model for the study of cone pathophysiology. Invest Ophthalmol Vis Sci 47:3109–18

    Article  PubMed  Google Scholar 

  41. Agbaga MP, Brush RS, Mandal MN, Henry K, Elliott MH, Anderson RE (2008) Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci USA 105:12843–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sparrow JR, Wu Y, Nagasaki T, Yoon KD, Yamamoto K, Zhou J (2010) Fundus autofluorescence and the bisretinoids of retina. Photochem Photobiol Sci 9:1480–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arikawa K, Molday LL, Molday RS et al (1992) Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. J Cell Biol. 116:659–67

    Article  CAS  PubMed  Google Scholar 

  44. Chakraborty D, Ding XQ, Fliesler SJ et al (2008) Outer segment oligomerization of rds: evidence from mouse models and subcellular fractionation. Biochemistry 47:1144–50

    Article  CAS  PubMed  Google Scholar 

  45. Tsybovsky Y, Molday RS, Palczewski K (2010) (2010) The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease. Adv Exp Med Biol. 703:105–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54:438–63

    Article  CAS  PubMed  Google Scholar 

  47. Connor WE, Neuringer M (1988) The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina. Prog Clin Biol Res 282:275–94

    CAS  PubMed  Google Scholar 

  48. Anderson GJ, Connor WE, Corliss JD (1990) Docosahexaenoic acid is the preferred dietary n-3 fatty acid for the development of the brain and retina. Pediatr Res 27:89–97

    Article  CAS  PubMed  Google Scholar 

  49. Rotstein NP, Aveldaño MI, Barrantes FJ, Politi LE (1996) Docosahexaenoic acid is required for the survival of rat retinal photoreceptors in vitro. J Neurochem 66:1851–9

    Article  CAS  PubMed  Google Scholar 

  50. Mizota A, Sato E, Taniai M, Adachi-Usami E, Nishikawa M (2001) Protective effects of dietary docosahexaenoic acid against kainate-induced retinal degeneration in rats. Invest Ophthalmol Vis Sci 42:216–21

    CAS  PubMed  Google Scholar 

  51. Moriguchi K, Yuri T, Yoshizawa K, Kiuchi K, Takada H, Inoue Y, Hada T, Matsumura M, Tsubura A (2003) Dietary docosahexaenoic acid protects against N-methyl-N-nitrosourea-induced retinal degeneration in rats. Exp Eye Res 77:167–73

    Article  CAS  PubMed  Google Scholar 

  52. Bazan NG, Molina MF, Gordon WC (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 31:321–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 101:8491–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Titos E, Rius B, González-Périz A, López-Vicario C, Morán-Salvador E, Martínez-Clemente M, Arroyo V, Clària J (2011) Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol 187:5408–18

    Article  CAS  PubMed  Google Scholar 

  56. Youyou A, Durand G, Pascal G, Piciotti M, Dumont O, Bourre JM (1986) Recovery of altered fatty acid composition induced by a diet devoid of n-3 fatty acids in myelin, synaptosomes, mitochondria, and microsomes of developing rat brain. J Neurochem 46:224–8

    Article  CAS  PubMed  Google Scholar 

  57. Agbaga MP, Merriman DK, Brush RS, Lydic TA, Conley SM, Naash MI, Jackson S, Woods AS, Reid GE, Busik JV, Anderson RE (2018) Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. J Lipid Res 59:1586–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dornstauder B, Suh M, Kuny S, Gaillard F, Macdonald IM, Clandinin MT, Sauvé Y (2012) Dietary docosahexaenoic acid supplementation prevents age-related functional losses and A2E accumulation in the retina. Invest Ophthalmol Vis Sci 53:2256–65

    Article  PubMed  Google Scholar 

  59. Litman BJ, Mitchell DC (1996) A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids 31 Suppl:S193–S197

  60. Mitchell DC, Niu SL, Litman BJ (2001) Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducin binding. J Biol Chem 276:42801–06

    Article  CAS  PubMed  Google Scholar 

  61. Niu SL, Mitchell DC, Litman BJ (2001) Optimization of receptor-G protein coupling by bilayer lipid composition II: formation of metarhodopsin II-transducin complex. J Biol Chem 276:42807–11

    Article  CAS  PubMed  Google Scholar 

  62. Litman BJ, Niu SL, Polozova A, Mitchell DC (2001) The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction. J Mol Neurosci 16:237–42

    Article  CAS  PubMed  Google Scholar 

  63. Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mitchell DC, Litman BJ (1998) Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers. Biophys J 75:896–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boesze-Battaglia K, Fliesler SJ, Albert AD (1990) Relationship of cholesterol content to spatial distribution and age of disk membranes In retinal rod outer segments. J Biol Chem 265:18867–18870

    Article  CAS  PubMed  Google Scholar 

  66. Albert A, Alexander D, Boesze-Battaglia K (2016) Cholesterol in the rod outer segment: A complex role in a “simple” system. Chem Phys Lipids 199:94–105

    Article  CAS  PubMed  Google Scholar 

  67. Sander CL, Sears AE, Pinto AFM et al (2021) Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J Cell Biol 220:e202101063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang K, Kniazeva M, Han M et al (2001) A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet 27:89–93

    Article  CAS  PubMed  Google Scholar 

  69. Lagali PS, Liu J, Ambasudhan R, Kakuk LE, Bernstein SL, Seigel GM, Wong PW, Ayyagari R (2003) Evolutionarily conserved ELOVL4 gene expression in the vertebrate retina. Invest Ophthalmol Vis Sci 44:2841–50

    Article  PubMed  Google Scholar 

  70. Umeda S, Ayyagari R, Suzuki MT, Ono F, Iwata F, Fujiki K, Kanai A, Takada Y, Yoshikawa Y, Tanaka Y, Iwata T (2003) Molecular cloning of ELOVL4 gene from cynomolgus monkey (Macaca fascicularis). Exp Anim 52:129–35

    Article  CAS  PubMed  Google Scholar 

  71. Liu A, Terry R, Lin Y, Nelson K, Bernstein PS (2013) Comprehensive and sensitive quantification of long-chain and very long-chain polyunsaturated fatty acids in small samples of human and mouse retina. J Chromatogr A. 1307:191–200

    Article  CAS  PubMed  Google Scholar 

  72. Bennett LD, Brush RS, Chan M, Lydic TA, Reese K, Reid GE, Busik JV, Elliott MH, Anderson R (2014) Effect of reduced retinal VLC-PUFA on rod and cone photoreceptors. Invest Ophthalmol Vis Sci 55:3150–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the verbrate retina. Prog Lipid Res. 22:79–131

    Article  CAS  PubMed  Google Scholar 

  74. Boesze-Battaglia K, Albert A (1992) Phospholipid distribution among bovine rod outer segment plasma membrane and disk membranes. Exp Eye Res. 54:821–3

    Article  CAS  PubMed  Google Scholar 

  75. Kim SR, Jang YP, Jockusch S, Fishkin NE, Turro NJ, Sparrow JR (2007) The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc Natl Acad Sci U S A 104:19273–19278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration andStargardt’s macular dystrophy: follow-up of two open-label phase ½ studies. Lancet 385:509–16

    Article  PubMed  Google Scholar 

  77. Komeima K, Rogers BS, Lu L, Campochiaro PA (2006) Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci USA 103:11300–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aït-Ali N, Fridlich R, Millet-Puel G et al (2015) Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 161:817–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the expert technical assistance of Ms. Cathy Royer, and the courteous assistance of Mr. Fabrice Poncin, Supervisor, Copvial SA.

Funding

This study was funded by the Fondation de la Recherche Médicale (FC) (grant no. DPR20121125278), UNADEV-ITMO (DH), the Fondation de France/Association Berthe Fouassier (DMV), the International Retinal Research Foundation (DMV), the Agence Nationale de Recherche (no. ANR-08-MNP-038) (DH, NA and LB), and NEI grant RO1 EY012951 (JRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hicks.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The experiments presented in this paper were authorized by the french Ministry of Research, APAFIS#8472-2016121318254073 v10.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 201 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verra, D.M., Spinnhirny, P., Sandu, C. et al. Intrinsic differences in rod and cone membrane composition: implications for cone degeneration. Graefes Arch Clin Exp Ophthalmol 260, 3131–3148 (2022). https://doi.org/10.1007/s00417-022-05684-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05684-9

Keywords

Navigation