Skip to main content

Advertisement

Log in

miR-340-5p mediates the therapeutic effect of mesenchymal stem cells on corneal neovascularization

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Our previous study revealed that mesenchymal stem cells (MSCs) inhibited angiogenesis via miRNA-mediated repression of prospero homeobox 1 (PROX1). This study aimed to verify whether miR-340-5p participates in the therapeutic effect of MSCs on corneal neovascularization (CNV) via repressing PROX1 and epithelial membrane protein 2 (EMP2).

Materials and methods

The rat CNV model was established by corneal alkali burn. The binding relationship between miR-340-5p and 3′-untranslational regions (3′UTRs) of EMP2 and PROX1 was confirmed using dual-luciferase reporter assay. After culturing corneal epithelial cells (CECs) using MSC supernatants, the vascular endothelial growth factor (VEGF) level in CEC supernatants and the CEC viability were detected. The role of miR-340-5p in the therapeutic effect of MSC on CNV was determined via lentivirus-mediated miR-340-5p intervention in vivo.

Results

The expression of miR-340-5p was reduced and EMP2 and PROX1 were increased in CNV corneal tissues. The lentivirus-mediated overexpression of miR-340-5p inhibited the expressions of EMP2 and PROX1. The dual-luciferase reporter assay confirmed that miR-340-5p could bind with the 3′UTRs of EMP2 and PROX1. miR-340-5p was enriched in MSC supernatants and the culture of CECs using MSC supernatants increased the miR-340-5p expression in CECs. After being cultured in miR-340-5p-knocking down MSC supernatants, the expressions of EMP2 and PROX1 were increased, and the VEGF level and CEC viability were restored. The in vivo experiments also indicated that the therapeutic effect of MSCs was mediated by miR-340-5p.

Conclusions

miR-340-5p mediates the therapeutic effect of MSCs on CNV via binding and repressing the expressions of EMP2 and PROX1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nicholas MP, Mysore N (2021) Corneal neovascularization. Exp Eye Res 202:108363. https://doi.org/10.1016/j.exer.2020.108363

    Article  CAS  PubMed  Google Scholar 

  2. Di Zazzo A, Gaudenzi D, Yin J, Coassin M, Fernandes M, Dana R, Bonini S (2021) Corneal angiogenic privilege and its failure. Exp Eye Res 204:108457. https://doi.org/10.1016/j.exer.2021.108457

    Article  CAS  PubMed  Google Scholar 

  3. Chen M, Bao L, Zhao M, Cao J, Zheng H (2020) Progress in research on the role of FGF in the formation and treatment of corneal neovascularization. Front Pharmacol 11:111. https://doi.org/10.3389/fphar.2020.00111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu H, Sun L, Cui J, Li Y, Yan Y, Wei X, Wang C, Song F, Jiang W, Liu Y, Ge H, Qian H, Li X, Tang X, Liu P (2019) Three kinds of corneal host cells contribute differently to corneal neovascularization. EBioMedicine 44:542–553. https://doi.org/10.1016/j.ebiom.2019.05.026

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gulias-Cañizo R, Lagunes-Guillén A, González-Robles A, Sánchez-Guzmán E, Castro-Muñozledo F (2019) (-)-Epigallocatechin-3-gallate, reduces corneal damage secondary from experimental grade II alkali burns in mice. Burns 45:398–412. https://doi.org/10.1016/j.burns.2018.08.021

    Article  PubMed  Google Scholar 

  6. Costa LA, Eiro N, Fraile M, Gonzalez LO, Saá J, Garcia-Portabella P, Vega B, Schneider J, Vizoso FJ (2021) Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cell Mol Life Sci 78:447–467. https://doi.org/10.1007/s00018-020-03600-0

    Article  CAS  PubMed  Google Scholar 

  7. Li KD, Wang Y, Sun Q, Li MS, Chen JL, Liu L (2021) Rabbit umbilical cord mesenchymal stem cells: a new option for tissue engineering. J Gene Med 23:e3282. https://doi.org/10.1002/jgm.3282

    Article  CAS  PubMed  Google Scholar 

  8. Epstein SE, Luger D, Lipinski MJ (2017) Paracrine-mediated systemic anti-inflammatory activity of intravenously administered mesenchymal stem cells: a transformative strategy for cardiac stem cell therapeutics. Circ Res 121:1044–1046. https://doi.org/10.1161/circresaha.117.311925

    Article  CAS  PubMed  Google Scholar 

  9. Jiang Z, Liu G, Meng F, Wang W, Hao P, Xiang Y, Wang Y, Han R, Li F, Wang L, Li X (2017) Paracrine effects of mesenchymal stem cells on the activation of keratocytes. Br J Ophthalmol 101:1583–1590. https://doi.org/10.1136/bjophthalmol-2016-310012

    Article  PubMed  Google Scholar 

  10. Eslani M, Putra I, Shen X, Hamouie J, Afsharkhamseh N, Besharat S, Rosenblatt MI, Dana R, Hematti P, Djalilian AR (2017) Corneal mesenchymal stromal cells are directly antiangiogenic via PEDF and sFLT-1. Invest Ophthalmol Vis Sci 58:5507–5517. https://doi.org/10.1167/iovs.17-22680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tao H, Chen X, Cao H, Zheng L, Li Q, Zhang K, Han Z, Han ZC, Guo Z, Li Z, Wang L (2019) Mesenchymal stem cell-derived extracellular vesicles for corneal wound repair. Stem Cells Int 2019:5738510. https://doi.org/10.1155/2019/5738510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pan J, Wang X, Li D, Li J, Jiang Z (2019) MSCs inhibits the angiogenesis of HUVECs through the miR-211/Prox1 pathway. J Biochem 166:107–113. https://doi.org/10.1093/jb/mvz038

    Article  CAS  PubMed  Google Scholar 

  13. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141:1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  14. Mukwaya A, Jensen L, Peebo B, Lagali N (2019) MicroRNAs in the cornea: role and implications for treatment of corneal neovascularization. Ocul Surf 17:400–411. https://doi.org/10.1016/j.jtos.2019.04.002

    Article  PubMed  Google Scholar 

  15. Liu S, Romano V, Steger B, Kaye SB, Hamill KJ, Willoughby CE (2018) Gene-based antiangiogenic applications for corneal neovascularization. Surv Ophthalmol 63:193–213. https://doi.org/10.1016/j.survophthal.2017.10.006

    Article  PubMed  Google Scholar 

  16. Higa K, Higuchi J, Kimoto R, Satake Y, Yamaguchi T, Tomida D, Shimazaki J (2019) Effects of amniotic membrane-derived fibroblast supernatant on corneal epithelium. Invest Ophthalmol Vis Sci 60:3718–3726. https://doi.org/10.1167/iovs.19-27041

    Article  CAS  PubMed  Google Scholar 

  17. Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, Jia L, Zhou Y (2019) Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif 52:e12669. https://doi.org/10.1111/cpr.12669

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu X, Huang Y, Hou J, Lv J, Ding X (2020) MiR-181c inhibits prostatic epithelial cell proliferation caused by chronic non-bacterial prostatitis through down-regulating COX-2. Aging Pathobiology and Therapeutics 2:210–218

    Article  CAS  Google Scholar 

  19. Roman MG, Flores LC, Cunningham GM, Cheng C, Dube S, Allen C, Remmen HV, Bai Y, Saunders TL, Ikeno Y (2020) Thioredoxin overexpression in mitochondria showed minimum effects on aging and age-related diseases in male C57BL/6 mice. Aging Pathobiology and Therapeutics 2:20–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mansoor H, Ong HS, Riau AK, Stanzel TP, Mehta JS, Yam GH (2019) Current trends and future perspective of mesenchymal stem cells and exosomes in corneal diseases. Int J Mol Sci 20(12):2853. https://doi.org/10.3390/ijms20122853

    Article  CAS  PubMed Central  Google Scholar 

  21. Sharif Z, Sharif W (2019) Corneal neovascularization: updates on pathophysiology, investigations & management. Rom J Ophthalmol 63:15–22

    Article  PubMed  PubMed Central  Google Scholar 

  22. Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL, Mihu CM (2018) Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 59:455–467

    PubMed  Google Scholar 

  23. Chung LK, Bhatt NS, Lagman C, Pelargos PE, Qin Y, Gordon LK, Wadehra M, Yang I (2017) Epithelial membrane protein 2: molecular interactions and clinical implications. J Clin Neurosci 44:84–88. https://doi.org/10.1016/j.jocn.2017.06.044

    Article  CAS  PubMed  Google Scholar 

  24. Gordon LK, Kiyohara M, Fu M, Braun J, Dhawan P, Chan A, Goodglick L, Wadehra M (2013) EMP2 regulates angiogenesis in endometrial cancer cells through induction of VEGF. Oncogene 32:5369–5376. https://doi.org/10.1038/onc.2012.622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fu M, Maresh EL, Helguera GF, Kiyohara M, Qin Y, Ashki N, Daniels-Wells TR, Aziz N, Gordon LK, Braun J, Elshimali Y, Soslow RA, Penichet ML, Goodglick L, Wadehra M (2014) Rationale and preclinical efficacy of a novel anti-EMP2 antibody for the treatment of invasive breast cancer. Mol Cancer Ther 13:902–915. https://doi.org/10.1158/1535-7163.Mct-13-0199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang CX, Wadehra M, Fisk BC, Goodglick L, Braun J (2001) Epithelial membrane protein 2, a 4-transmembrane protein that suppresses B-cell lymphoma tumorigenicity. Blood 97:3890–3895. https://doi.org/10.1182/blood.v97.12.3890

    Article  CAS  PubMed  Google Scholar 

  27. Wadehra M, Sulur GG, Braun J, Gordon LK, Goodglick L (2003) Epithelial membrane protein-2 is expressed in discrete anatomical regions of the eye. Exp Mol Pathol 74:106–112. https://doi.org/10.1016/s0014-4800(03)00009-1

    Article  CAS  PubMed  Google Scholar 

  28. Morales SA, Telander DG, Leon D, Forward K, Braun J, Wadehra M, Gordon LK (2013) Epithelial membrane protein 2 controls VEGF expression in ARPE-19 cells. Invest Ophthalmol Vis Sci 54:2367–2372. https://doi.org/10.1167/iovs.12-11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang KD, Wang Y, Zhang F, Luo BH, Feng DY, Zeng ZJ (2021) CircN4BP2L2 promotes colorectal cancer growth and metastasis through regulation of the miR-340–5p/CXCR4 axis. Lab Invest.DOI https://doi.org/10.1038/s41374-021-00632-3

  30. Zhang Z, Zhou Q, Luo F, Zhou R, Xu J, Xiao J, Dai F, Song L (2021) Circular RNA circ-CHI3L1.2 modulates cisplatin resistance of osteosarcoma cells via the miR-340-5p/LPAATβ axis. Hum Cell 34:1558–1568. https://doi.org/10.1007/s13577-021-00564-6

    Article  CAS  PubMed  Google Scholar 

  31. Zhang HH, Li R, Li YJ, Yu XX, Sun QN, Li AY, Kong Y (2020) eIF4E-related miR-320a and miR-340-5p inhibit endometrial carcinoma cell metastatic capability by preventing TGF-β1-induced epithelial-mesenchymal transition. Oncol Rep 43:447–460. https://doi.org/10.3892/or.2019.7437

    Article  CAS  PubMed  Google Scholar 

  32. Du K, Li Z, Fang X, Cao T, Xu Y (2017) Ferulic acid promotes osteogenesis of bone marrow-derived mesenchymal stem cells by inhibiting microRNA-340 to induce β-catenin expression through hypoxia. Eur J Cell Biol 96:496–503. https://doi.org/10.1016/j.ejcb.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  33. Chen F, Chu L, Li J, Shi Y, Xu B, Gu J, Yao X, Tian M, Yang X, Sun X (2020) Hypoxia induced changes in miRNAs and their target mRNAs in extracellular vesicles of esophageal squamous cancer cells. Thorac Cancer 11:570–580. https://doi.org/10.1111/1759-7714.13295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228. https://doi.org/10.1038/nrm.2017.125

    Article  CAS  PubMed  Google Scholar 

  35. Chen F, Xu B, Li J, Yang X, Gu J, Yao X, Sun X (2021) Hypoxic tumour cell-derived exosomal miR-340-5p promotes radioresistance of oesophageal squamous cell carcinoma via KLF10. J Exp Clin Cancer Res 40:38. https://doi.org/10.1186/s13046-021-01834-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seo M, Choi JS, Rho CR, Joo CK, Lee SK (2015) MicroRNA miR-466 inhibits lymphangiogenesis by targeting prospero-related homeobox 1 in the alkali burn corneal injury model. J Biomed Sci 22:3. https://doi.org/10.1186/s12929-014-0104-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun MM, Chan AM, Law SM, Duarte S, Diaz-Aguilar D, Wadehra M, Gordon LK (2019) Epithelial membrane protein-2 (EMP2) antibody blockade reduces corneal neovascularization in an in vivo model. Invest Ophthalmol Vis Sci 60:245–254. https://doi.org/10.1167/iovs.18-24345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was supported by the Zhejiang Provincial Natural Science Foundation of China (grant number: LBY21H120001 to Z.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zipei Jiang.

Ethics declarations

Ethics approval

This study was approved by the Institute Research Medical Ethics Committee of the First Affiliated Hospital of Wenzhou Medical University. All animal experiments were complied with the ARRIVE guidelines and were carried out following the US Public Health Service Policy on Humane Care and Use of Laboratory Animals.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Luo, X., Zhao, S. et al. miR-340-5p mediates the therapeutic effect of mesenchymal stem cells on corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 260, 497–507 (2022). https://doi.org/10.1007/s00417-021-05394-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05394-8

Keywords

Navigation