Skip to main content

Advertisement

Log in

Effects of topical low-dose preservative-free hydrocortisone on intraocular pressure in patients affected by ocular surface disease with and without glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This study aims to investigate the safety and efficacy of short-term treatment for ocular surface disease (OSD) with topical low-dose (1,005 mg) preservative-free hydrocortisone in one hundred patients with and without glaucoma.

Methods

This was an open label non-randomized clinical trial. Patients with OSD with and without primary open-angle glaucoma (POAG) received topical low-dose (1,005 mg) preservative-free hydrocortisone twice daily in each eye for 2 weeks. All patients underwent a complete ophthalmological examination at baseline (T0) and at 1 (T1) and 2 (T2) weeks post-treatment. At each visit, the intraocular pressure (IOP) and the ocular surface disease index (OSDI) questionnaire scores were recorded; the Schirmer test was performed only at T0 and T2.

Results

The OSDI score significantly decreased in both the POAG and no-POAG groups (both p < 0.0001) after hydrocortisone treatment, with no difference between the two groups (p = 0.72). There were no significant differences in IOP and Schirmer test results between T0 and T2 in both treatment groups (p = 0.68 and p = 0.83, respectively).

Conclusions

Topical low-dose (1,005 mg) preservative-free hydrocortisone is safe and effective for improving OSD symptoms both in patients with and without POAG.

Trial registration

The trial was registered at clinicaltrials.gov under NCT04536129 on 01/09/2020 (“retrospectively registered”).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Khanna RC (2017) Ocular surface disorders. Community Eye Health J 30(99):S1–S2

    PubMed  PubMed Central  Google Scholar 

  2. Akpek EK, Amescua G, Farid M, Garcia-Ferrer FJ, Lin A, Rhee MK et al (2019) American Academy of Ophthalmology Preferred Practice Pattern Cornea and External Disease Panel. Dry Eye Syndrome Preferred Practice Pattern®. Ophthalmology 126(1):P286–P334. https://doi.org/10.1016/j.ophtha.2018.10.023

    Article  PubMed  Google Scholar 

  3. Craig JP, Nelson JD, Azar DT, Belmonte C, Bron AJ, Chauhan SK et al (2017) TFOS DEWS II Report Executive Summary. Ocul Surf 15(4):802–812. https://doi.org/10.1016/j.jtos.2017.08.003

    Article  PubMed  Google Scholar 

  4. No Authors (2007) The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop .Ocul Surf 5(2):93–107. https://doi.org/10.1016/s1542-0124(12)70082-4

  5. Lanza M, GironiCarnevale UA, Mele L, BifaniSconocchia M, Bartollino S, Costagliola C (2019) Morphological and functional evaluation of oral citicoline therapy in chronic open-angle glaucoma patients: a pilot study with a 2-year follow-up. Front Pharmacol 10:1117. https://doi.org/10.3389/fphar.2019.01117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Costagliola C, dell’Omo R, Agnifili L, Bartollino S, Fea AM, Uva MG, Zeppa L, Mastropasqua L (2020) How many aqueous humor outflow pathways are there? Surv Ophthalmol 65(2):144–170. https://doi.org/10.1016/j.survophthal.2019.10.002

    Article  PubMed  Google Scholar 

  7. European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th edition - chapter 2: classification and terminology Supported by the EGS Foundation: Part 1: Foreword; Introduction; Glossary; Chapter 2 Classification and Terminology. (2017) Br J Ophthalmol 101(5):73–127. https://doi.org/10.1136/bjophthalmol-2016-EGSguideline.002

  8. Baudouin C, Labbé A, Liang H, Pauly A, Brignole-Baudouin F (2010) Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res 29(4):312–334. https://doi.org/10.1016/j.preteyeres.2010.03.001

    Article  PubMed  CAS  Google Scholar 

  9. Staso SDI, Agnifili L, Ciancaglini M, Murano G, Borrelli E, Mastropasqua L (2018) In vivo scanning laser confocal microscopy of conjunctival goblet cells in medically-controlled glaucoma. In Vivo 32(2):437–443. https://doi.org/10.21873/invivo.11259

    Article  CAS  Google Scholar 

  10. Mohammed I, Kulkarni B, Faraj LA, Abbas A, Dua HS, King AJ (2020) Profiling ocular surface responses to preserved and non-preserved topical glaucoma medications: a 2-year randomized evaluation study. Clin Exp Ophthalmol 48(7):973–982. https://doi.org/10.1111/ceo.13814

    Article  PubMed  Google Scholar 

  11. Rossi GCM (2014) Diagnosis and treatment methods for ocular surface disease in glaucoma. European Ophthalmic Review 8(1):40–3. https://doi.org/10.17925/EOR.2014.08.01.40

    Article  Google Scholar 

  12. Bucolo C, Fidilio A, Fresta CG, Lazzara F, Platania CBM, Cantarella G et al (2019) Ocular pharmacological profile of hydrocortisone in dry eye disease. Front Pharmacol 10:1240. https://doi.org/10.3389/fphar.2019.01240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Feroze KB, Khazaeni L (2021) Steroid Induced Glaucoma. 2021 Jul 17. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL)

  14. Kallab M, Szegedi S, Hommer N, Stegmann H, Kaya S, Werkmeister RM, Schmidl D, Schmetterer L, Garhöfer G (2020) Topical low dose preservative-free hydrocortisone reduces signs and symptoms in patients with chronic dry eye: a randomized clinical trial. Adv Ther 37(1):329–341. https://doi.org/10.1007/s12325-019-01137-8 (Erratum.In:AdvTher.2019Dec10)

    Article  PubMed  CAS  Google Scholar 

  15. Southren AL, Altman K, Vittek J, Boniuk V, Gordon GG (1976) Steroid metabolism in ocular tissues of the rabbit. Invest Ophthalmol 15(3):222–228

    PubMed  CAS  Google Scholar 

  16. Doane MG, Jensen AD, Dohlman CH (1978) Penetration routes of topically applied eye medications. A J Ophthalmol 85:383–386

    Article  CAS  Google Scholar 

  17. Jin X, Qin Q, Tu L, Qu J (2009) Glucocorticoids inhibit the innate immune system of human corneal fibroblast through their suppression of toll-like receptors. Mol Vis 15:2435–41

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Gao T, Lin Z, Jin X (2009) Hydrocortisone suppression of the expression of VEGF may relate to toll-like receptor (TLR) 2 and 4. Curr Eye Res 34(9):777–784. https://doi.org/10.1080/02713680903067919

    Article  PubMed  CAS  Google Scholar 

  19. Allocco AR, Ponce JA, Riera MJ, Magurno MG (2017) Critical pathway for primary open angle glaucoma diagnosis. Int J Ophthalmol 10(6):968–972. https://doi.org/10.18240/ijo.2017.06.21

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mathews PM, Ramulu PY, Friedman DS, Utine CA, Akpek EK (2013) Evaluation of ocular surface disease in patients with glaucoma. Ophthalmology 120(11):2241–2248. https://doi.org/10.1016/j.ophtha.2013.03.045

    Article  PubMed  Google Scholar 

  21. Steven AJ (2010) Sample sizes for clinical trials. CRC Press, Taylor & Francis Group. A Chapman & Hall Book

  22. Glymour MM, Weuve J, Berkman LF, Kawachi I, Robins JM (2005) When is baseline adjustment useful in analyses of change? An example with education and cognitive change. Am J Epidemiol 162(3):267–278

    Article  Google Scholar 

  23. Barnes PJ (2006) Corticosteroid effects on cell signalling. Eur Respir J 27(2):413–426. https://doi.org/10.1183/09031936.06.00125404

    Article  PubMed  CAS  Google Scholar 

  24. Gupte R, Muse GW, Chinenov Y, Adelman K, Rogatsky I (2013) Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle. Proc Natl Acad Sci U S A 110(36):14616–14621. https://doi.org/10.1073/pnas.1309898110

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med 353(16):1711–1723. https://doi.org/10.1056/NEJMra050541

    Article  PubMed  CAS  Google Scholar 

  26. Sheppard JD, Comstock TL, Cavet ME (2016) Impact of the topical ophthalmic corticosteroid loteprednol etabonate on intraocular pressure. Adv Ther 33(4):532–52. https://doi.org/10.1007/s12325-016-0315-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kersey JP, Broadway DC (2006) Corticosteroid-induced glaucoma: a review of the literature. Eye (Lond) 20(4):407–416. https://doi.org/10.1038/sj.eye.6701895

    Article  CAS  Google Scholar 

  28. Razeghinejad MR, Katz LJ (2012) Steroid-induced iatrogenic glaucoma. Ophthalmic Res 47(2):66–80. https://doi.org/10.1159/000328630

    Article  PubMed  CAS  Google Scholar 

  29. Razeghinejad MR, Myers JS, Katz LJ (2011) Iatrogenic glaucoma secondary to medications. Am J Med 124(1):20–25. https://doi.org/10.1016/j.amjmed.2010.08.011

    Article  PubMed  CAS  Google Scholar 

  30. Costagliola C, dell’Omo R, Romano MR, Rinaldi M, Zeppa L, Parmeggiani F (2009) Pharmacotherapy of intraocular pressure: part I. Parasympathomimetic, sympathomimetic and sympatholytics. Expert Opin Pharmacother 10(16):2663–2677. https://doi.org/10.1517/14656560903300103

    Article  PubMed  CAS  Google Scholar 

  31. Armaly MF (1963) Effect of corticosteroids on intraocular pressure and fluid dynamics. i. the effect of dexamethasone in the normal eye. Arch Ophthalmol 70:482–491. https://doi.org/10.1001/archopht.1963.00960050484010

    Article  PubMed  CAS  Google Scholar 

  32. Becker B, Mills DW (1963) Corticosteroids and intraocular pressure. Arch Ophthalmol 70:500–507. https://doi.org/10.1001/archopht.1963.00960050502012

    Article  PubMed  CAS  Google Scholar 

  33. Jones R 3rd, Rhee DJ (2006) Corticosteroid-induced ocular hypertension and glaucoma: a brief review and update of the literature. Curr Opin Ophthalmol 17(2):163–167. https://doi.org/10.1097/01.icu.0000193079.55240.18

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Ciro Costagliola and Mariaelena Filippelli; methodology, Roberto dell’Omo and Pasquale Napolitano; formal analysis and investigation, Aldo Gelso, Giuseppe Campagna, Alessandra Russo, Michele Rinaldi, and Silvia Bartollino; writing — original draft preparation, Ciro Costagliola and Mariaelena Filippelli; writing — review and editing, Ciro Coatagliola, Mariaelena Filippelli, Roberto dell’Omo, and Giuseppe Campagna; supervision, Ciro Costagliola. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Filippelli.

Ethics declarations

Ethics approval

The study protocol was approved by the scientific technical committee of the University of Molise (CTS 11/2019).

Consent to participate

Written informed consent was obtained from all study participants prior to participation.

Consent for publication

Obtained.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippelli, M., dell’Omo, R., Gelso, A. et al. Effects of topical low-dose preservative-free hydrocortisone on intraocular pressure in patients affected by ocular surface disease with and without glaucoma. Graefes Arch Clin Exp Ophthalmol 260, 247–253 (2022). https://doi.org/10.1007/s00417-021-05345-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05345-3

Keywords

Navigation