Skip to main content

Advertisement

Log in

Long-term structural and functional outcomes of primary congenital glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the clinical characteristics and long-term outcomes of primary congenital glaucoma (PCG) patients.

Methods

In this retrospective, longitudinal, cohort study, PCG patients with reliable visual field (VF) tests and optical coherence tomography (OCT) were included. Disease progression was detected using guided progression analysis with OCT and the change analysis of mean deviation (MD) slope with VF tests. Factors associated with the disease progression and visual prognosis were analyzed.

Results

Twenty-nine eyes from 11 bilateral and 7 unilateral PCG patients were enrolled. LogMAR visual acuity declined (0.15 vs. 0.40, P < 0.001). The change rate of the average retinal nerve fiber layer thickness was − 0.83 ± 1.45 µm/year, and 28% of eyes showed glaucoma progression on OCT. The median of the MD slope was 0.16 (− 1.19 to 1.07) dB/year, and 14% of eyes showed glaucoma progression on the VF test. Higher average intraocular pressure (IOP) (P = 0.046) and IOP fluctuation (P = 0.031) predicted disease progression. None of the fellow eyes of unilateral PCG patients developed glaucoma during the follow-up. At last, 59% of eyes had visual acuity > 20/70, and 31% had MD >  − 6 dB. Patients with worse baseline visual acuity (P = 0.027), worse baseline MD (P < 0.001), and smaller neuroretinal rim area (P < 0.001) showed worse final MD values.

Conclusions

Aggressive IOP control is necessary to prevent structural and functional decline in PCG patients. Their fellow eyes are not at risk of glaucoma. Baseline neuroretinal rim area can predict the functional outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data is available upon reasonable request.

Code availability

Not applicable.

References

  1. Bayoumi NH (2017) Fellow eye in unilateral primary congenital glaucoma. J Curr Glaucoma Pract 11(1):28–30. https://doi.org/10.5005/jp-journals-10008-1217

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guo C, Wu Y, Xu L, Li M, Wang Z, Ni N, Guo W (2017) Evaluation of preoperative speed of progression and its association with surgical outcomes in primary congenital glaucoma patients: a retrospective study. BMC Ophthalmol 17(1):170. https://doi.org/10.1186/s12886-017-0565-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moore DB, Tomkins O, Ben-Zion I (2013) A review of primary congenital glaucoma in the developing world. Surv Ophthalmol 58(3):278–285. https://doi.org/10.1016/j.survophthal.2012.11.003

    Article  PubMed  Google Scholar 

  4. Zagora SL, Funnell CL, Martin FJ, Smith JE, Hing S, Billson FA, Veillard AS, Jamieson RV, Grigg JR (2015) Primary congenital glaucoma outcomes: lessons from 23 years of follow-up. Am J Ophthalmol 159(4):788–796. https://doi.org/10.1016/j.ajo.2015.01.019

    Article  PubMed  Google Scholar 

  5. Yassin SA (2017) Long-Term visual outcomes in children with primary congenital glaucoma. Eur J Ophthalmol 27(6):705–710. https://doi.org/10.5301/ejo.5000976

    Article  PubMed  Google Scholar 

  6. de Silva DJ, Khaw PT, Brookes JL (2011) Long-term outcome of primary congenital glaucoma. J AAPOS 15(2):148–152. https://doi.org/10.1016/j.jaapos.2010.11.025

    Article  PubMed  Google Scholar 

  7. Suh W, Kee C (2016) Long-term outcome of primary congenital glaucoma in South Korea. Acta Ophthalmol 94(2):e162-163. https://doi.org/10.1111/aos.12834

    Article  PubMed  Google Scholar 

  8. Chaudhary RS, Gupta A, Sharma A, Gupta S, Sofi RA, Sundar D, Sihota R, Somarajan BI, Singh A, Sangwan R, Gupta V (2019) Long-term functional outcomes of different subtypes of primary congenital glaucoma. Br J Ophthalmol 104(9):1288–1292. https://doi.org/10.1136/bjophthalmol-2019-315131

    Article  PubMed  Google Scholar 

  9. Sihota R, Selvan H, Sharma A, Gupta N, Shakrawal J, Angmo D, Dada T, Upadhyay A (2020) Severity of visual field defects in primary congenital glaucoma and their risk factors. Graefes Arch Clin Exp Ophthalmol 258(7):1483–1491. https://doi.org/10.1007/s00417-020-04677-w

    Article  PubMed  Google Scholar 

  10. Srinivasan S, Addepalli UK, Rao HL, Garudadri CS, Mandal AK (2014) Spectral domain optical coherence tomography in children operated for primary congenital glaucoma. Br J Ophthalmol 98(2):162–165. https://doi.org/10.1136/bjophthalmol-2012-302486

    Article  PubMed  Google Scholar 

  11. Pilat AV, Shah S, Sheth V, Purohit R, Proudlock FA, Abbott J, Gottlob I (2019) Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography. BMJ Open Ophthalmol 4(1):e000194. https://doi.org/10.1136/bmjophth-2018-000194

    Article  PubMed  PubMed Central  Google Scholar 

  12. Neustein RF, Bruce BB, Beck AD (2016) Primary congenital glaucoma versus glaucoma following congenital cataract surgery: comparative clinical features and long-term outcomes. Am J Ophthalmol 170:214–222. https://doi.org/10.1016/j.ajo.2016.08.012

    Article  PubMed  Google Scholar 

  13. Hu Y, Fang L, Guo X, Yang X, Chen W, Ding X, Liu X, He M (2018) Corneal configurations and high-order aberrations in primary congenital glaucoma. J Glaucoma 27(12):1112–1118. https://doi.org/10.1097/ijg.0000000000001049

    Article  PubMed  Google Scholar 

  14. Nouri-Mahdavi K, Hoffman D, Coleman AL, Liu G, Li G, Gaasterland D, Caprioli J (2004) Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology 111(9):1627–1635. https://doi.org/10.1016/j.ophtha.2004.02.017

    Article  PubMed  Google Scholar 

  15. Hwang YH, Kim MK, Wi JM, Chung JK, Lee KB (2018) Detection of progression of glaucomatous retinal nerve fibre layer defects using optical coherence tomography-guided progression analysis. Clin Exp Optom 101(1):100–108. https://doi.org/10.1111/cxo.12556

    Article  PubMed  Google Scholar 

  16. Kiuchi T, Motoyama Y, Oshika T (2006) Relationship of progression of visual field damage to postural changes in intraocular pressure in patients with normal-tension glaucoma. Ophthalmology 113(12):2150–2155. https://doi.org/10.1016/j.ophtha.2006.06.014

    Article  PubMed  Google Scholar 

  17. Vashist P, Senjam SS, Gupta V, Gupta N, Kumar A (2017) Definition of blindness under National Programme for Control of Blindness: do we need to revise it? Indian J Ophthalmol 65(2):92–96. https://doi.org/10.4103/ijo.IJO_869_16

    Article  PubMed  PubMed Central  Google Scholar 

  18. Susanna R Jr, Vessani RM (2009) Staging glaucoma patient: why and how? Open Ophthalmol J 3:59–64. https://doi.org/10.2174/1874364100903020059

    Article  PubMed  Google Scholar 

  19. Gothwal VK, Sharma S, Mandal AK (2020) Beyond intraocular pressure: visual functioning and quality of life in primary congenital glaucoma and secondary childhood glaucoma. Am J Ophthalmol 209:62–70. https://doi.org/10.1016/j.ajo.2019.09.002

    Article  PubMed  Google Scholar 

  20. Khitri MR, Mills MD, Ying GS, Davidson SL, Quinn GE (2012) Visual acuity outcomes in pediatric glaucomas. J AAPOS 16(4):376–381. https://doi.org/10.1016/j.jaapos.2012.05.007

    Article  PubMed  Google Scholar 

  21. Pedersen KB, Kappelgaard P, Kessel L, Sandfeld L, Zibrandtsen N, Bach-Holm D (2020) Primary congenital glaucoma in Denmark, 1977–2016. Acta Ophthalmol 98(2):182–189. https://doi.org/10.1111/aos.14207

    Article  PubMed  Google Scholar 

  22. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL (2009) Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 18(7):501–505. https://doi.org/10.1097/IJG.0b013e318193c2be

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sinha G, Patil B, Sihota R, Gupta V, Nayak B, Sharma R, Sharma A, Gupta N (2015) Visual field loss in primary congenital glaucoma. J AAPOS 19(2):124–129. https://doi.org/10.1016/j.jaapos.2014.12.008

    Article  PubMed  Google Scholar 

  24. Morales-Fernandez L, Jimenez-Santos M, Martinez-de-la-Casa JM, Sanchez-Jean R, Nieves M, Saenz-Frances F, Garcia-Saenz S, Perucho L, Gomez-de-Liano R, Garcia-Feijoo J (2018) Diagnostic capacity of SD-OCT segmented ganglion cell complex versus retinal nerve fiber layer analysis for congenital glaucoma. Eye (Lond) 32(8):1338–1344. https://doi.org/10.1038/s41433-018-0077-4

    Article  Google Scholar 

  25. Wu Z, Saunders LJ, Zangwill LM, Daga FB, Crowston JG, Medeiros FA (2017) Impact of normal aging and progression definitions on the specificity of detecting retinal nerve fiber layer thinning. Am J Ophthalmol 181:106–113. https://doi.org/10.1016/j.ajo.2017.06.017

    Article  PubMed  Google Scholar 

  26. Jeong D, Sung KR, Jo YH, Yun SC (2020) Age-related physiologic thinning rate of the retinal nerve fiber layer in different levels of myopia. J Ophthalmol 2020:1873581. https://doi.org/10.1155/2020/1873581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee JS, Seong GJ, Kim CY, Lee SY, Bae HW (2019) Risk factors associated with progressive nerve fiber layer thinning in open-angle glaucoma with mean intraocular pressure below 15 mmHg. Sci Rep 9(1):19811. https://doi.org/10.1038/s41598-019-56387-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hammel N, Belghith A, Weinreb RN, Medeiros FA, Mendoza N, Zangwill LM (2017) Comparing the rates of retinal nerve fiber layer and ganglion cell-inner plexiform layer loss in healthy eyes and in glaucoma eyes. Am J Ophthalmol 178:38–50. https://doi.org/10.1016/j.ajo.2017.03.008

    Article  PubMed  Google Scholar 

  29. Chauhan BC, Malik R, Shuba LM, Rafuse PE, Nicolela MT, Artes PH (2014) Rates of glaucomatous visual field change in a large clinical population. Invest Ophthalmol Vis Sci 55(7):4135–4143. https://doi.org/10.1167/iovs.14-14643

    Article  PubMed  Google Scholar 

  30. Park HY, Hong KE, Park CK (2016) Impact of age and myopia on the rate of visual field progression in glaucoma patients. Medicine 95(21):e3500. https://doi.org/10.1097/md.0000000000003500

    Article  PubMed  PubMed Central  Google Scholar 

  31. Matlach J, Bender S, König J, Binder H, Pfeiffer N, Hoffmann EM (2019) Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin Ophthalmol 13:9–16. https://doi.org/10.2147/opth.S186526

    Article  PubMed  Google Scholar 

  32. Park JH, Yoo C, Yoo E, Kim YY (2016) Long-term surgical outcomes of 180-degree suture trabeculotomy in Korean patients with primary congenital glaucoma. J Glaucoma 25(7):e681-685. https://doi.org/10.1097/ijg.0000000000000337

    Article  PubMed  Google Scholar 

  33. Esfandiari H, Basith SST, Kurup SP, Mets-Halgrimson R, Hassanpour K, Yoon H, Zeid JL, Mets MB, Tanna AP, Rahmani B (2019) Long-term surgical outcomes of ab externo trabeculotomy in the management of primary congenital glaucoma. J AAPOS 23(4):222.e221-222.e225. https://doi.org/10.1016/j.jaapos.2019.05.008

    Article  Google Scholar 

  34. Janson BJ, Alward WL, Kwon YH, Bettis DI, Fingert JH, Provencher LM, Goins KM, Wagoner MD, Greiner MA (2018) Glaucoma-associated corneal endothelial cell damage: a review. Surv Ophthalmol 63(4):500–506. https://doi.org/10.1016/j.survophthal.2017.11.002

    Article  PubMed  Google Scholar 

  35. Mastropasqua L, Carpineto P, Ciancaglini M, Nubile M, Doronzo E (2002) In vivo confocal microscopy in primary congenital glaucoma with megalocornea. J Glaucoma 11(2):83–89. https://doi.org/10.1097/00061198-200204000-00002

    Article  PubMed  Google Scholar 

  36. Mahelkova G, Filous A, Odehnal M, Cendelin J (2013) Corneal changes assessed using confocal microscopy in patients with unilateral buphthalmos. Invest Ophthalmol Vis Sci 54(6):4048–4053. https://doi.org/10.1167/iovs.12-11165

    Article  PubMed  Google Scholar 

  37. Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316(7139):1236–1238. https://doi.org/10.1136/bmj.316.7139.1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Statistical and writing consultation was provided by the Department of Medical Research at National Taiwan University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jehn-Yu Huang.

Ethics declarations

Ethical approval

This study was approved by the Institutional Review Board of National Taiwan University Hospital and adhered to the tenets of the Declaration of Helsinki.

Consent to participate

Informed consent was waived by the Institutional Review Board of National Taiwan University Hospital due to its retrospective nature

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsia, Y., Lai, TT., Su, CC. et al. Long-term structural and functional outcomes of primary congenital glaucoma. Graefes Arch Clin Exp Ophthalmol 259, 2317–2326 (2021). https://doi.org/10.1007/s00417-021-05185-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05185-1

Keywords

Navigation