Skip to main content

Advertisement

Log in

Retinal microvascular metrics in untreated essential hypertensives using optical coherence tomography angiography

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To quantify early changes of macular microvascular density, complexity, and peripapillary vessel caliber in hypertension using optical coherence tomography angiography (OCTA).

Methods

Hypertension (137 eyes) and healthy eyes (79 eyes) as control were involved in this prospective observational study. Indices of the microcirculation included vessel density (VD), skeleton density (SD), vessel diameter index (VDI), fractal dimension (FD) and foveal avascular zone (FAZ) of superficial retinal layer (SRL) and deep retinal layer (DRL), and peripapillary vessel calibers. The correlation of these indices with mean arterial pressure (MAP) and ocular perfusion pressure (OPP) was analyzed.

Results

Mean VD of DRL, SD of SRL and DRL, and FD of SRL and DRL were significantly reduced in the macula of hypertensive eyes (all P < 0.01). Meanwhile, hypertensive eyes had margin results of narrower peripapillary arteriolar caliber (P = 0.04). No significant finding was demonstrated on VD of SRL, VDI and FAZ of SRL and DRL, peripapillary total vascular caliber, and peripapillary venal caliber (all P > 0.05). SD and VD of the DRL correlated negatively with MAP (both R = − 0.152, P = 0.03).

Conclusion

OCTA algorithms may provide an additional inexpensive tool to aid in the preclinical assessment of hypertensive subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buus NH, Mathiassen ON, Fenger-Gron M, Praestholm MN, Sihm I, Thybo NK, Schroeder AP, Thygesen K, Aalkjaer C, Pedersen OL, Mulvany MJ, Christensen KL (2013) Small artery structure during antihypertensive therapy is an independent predictor of cardiovascular events in essential hypertension. J Hypertens 31(4):791–797. https://doi.org/10.1097/HJH.0b013e32835e215e

    Article  CAS  PubMed  Google Scholar 

  2. Feihl F, Liaudet L, Waeber B (2009) The macrocirculation and microcirculation of hypertension. Curr Hypertens Rep 11(3):182–189

    Article  Google Scholar 

  3. Bhargava M, Ikram MK, Wong TY (2012) How does hypertension affect your eyes? J Hum Hypertens 26(2):71–83. https://doi.org/10.1038/jhh.2011.37

    Article  CAS  PubMed  Google Scholar 

  4. Huang Y, Zhang J, Huang Y (2012) An automated computational framework for retinal vascular network labeling and branching order analysis. Microvasc Res 84(2):169–177. https://doi.org/10.1016/j.mvr.2012.05.005

    Article  PubMed  Google Scholar 

  5. Rosenbaum D, Kachenoura N, Koch E, Paques M, Cluzel P, Redheuil A, Girerd X (2016) Relationships between retinal arteriole anatomy and aortic geometry and function and peripheral resistance in hypertensives. Hypertens Res 39(7):536–542. https://doi.org/10.1038/hr.2016.26

    Article  CAS  PubMed  Google Scholar 

  6. You Q, Freeman WR, Weinreb RN, Zangwill L, Manalastas PIC, Saunders LJ, Nudleman E (2017) Reproducibility of vessel density measurement with optical coherence tomography angiography in eyes with and without retinopathy. Retina 37(8):1475–1482. https://doi.org/10.1097/IAE.0000000000001407

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scarinci F, Picconi F, Giorno P, Boccassini B, De Geronimo D, Varano M, Frontoni S, Parravano M (2018) Deep capillary plexus impairment in patients with type 1 diabetes mellitus with no signs of diabetic retinopathy revealed using optical coherence tomography angiography. Acta Ophthalmol 96(2):e264–e265. https://doi.org/10.1111/aos.13510

    Article  PubMed  Google Scholar 

  8. Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR (2017) Impact of multiple en face image averaging on quantitative assessment from optical coherence tomography angiography images. Ophthalmology 124(7):944–952. https://doi.org/10.1016/j.ophtha.2017.02.006

    Article  Google Scholar 

  9. Zhang W, Kang L, Zhang Y, Zhao L, Zhu R, Gu X, Wu H, Wang X, Yang L (2019) Quantitative analysis of retinal and choroidal microvascular parameters using optical coherence tomography angiography in children with nephrotic syndrome: a pilot study. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-019-04561-2

  10. Wintergerst MWM, Pfau M, Muller PL, Berger M, de Sisternes L, Holz FG, Finger RP (2018) Optical coherence tomography angiography in intermediate uveitis. Am J Ophthalmol 194:35–45. https://doi.org/10.1016/j.ajo.2018.06.023

    Article  PubMed  Google Scholar 

  11. Bhardwaj S, Tsui E, Zahid S, Young E, Mehta N, Agemy S, Garcia P, Rosen RB, Young JA (2018) Value of fractal analysis of optical coherence tomography angiography in various stages of diabetic retinopathy. Retina 38(9):1816–1823. https://doi.org/10.1097/IAE.0000000000001774

    Article  PubMed  Google Scholar 

  12. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA Sr, Williamson JD, Wright JT Jr (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension 71(6):e13–e115. https://doi.org/10.1161/HYP.0000000000000065

    Article  CAS  PubMed  Google Scholar 

  13. Zahid S, Dolz-Marco R, Freund KB, Balaratnasingam C, Dansingani K, Gilani F, Mehta N, Young E, Klifto MR, Chae B, Yannuzzi LA, Young JA (2016) Fractal dimensional analysis of optical coherence tomography angiography in eyes with diabetic retinopathy. Invest Ophthalmol Vis Sci 57(11):4940–4947. https://doi.org/10.1167/iovs.16-19656

    Article  PubMed  Google Scholar 

  14. Heagerty AM, Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ (1993) Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension 21(4):391–397

    Article  CAS  Google Scholar 

  15. Feihl F, Liaudet L, Waeber B, Levy BI (2006) Hypertension: a disease of the microcirculation? Hypertension 48(6):1012–1017. https://doi.org/10.1161/01.HYP.0000249510.20326.72

    Article  CAS  PubMed  Google Scholar 

  16. Mathiassen ON, Buus NH, Larsen ML, Mulvany MJ, Christensen KL (2007) Small artery structure adapts to vasodilatation rather than to blood pressure during antihypertensive treatment. J Hypertens 25(5):1027–1034. https://doi.org/10.1097/HJH.0b013e3280acac75

    Article  CAS  PubMed  Google Scholar 

  17. Gepstein R, Rosman Y, Rechtman E, Koren-Morag N, Segev S, Assia E, Grossman E (2012) Association of retinal microvascular caliber with blood pressure levels. Blood Press 21(3):191–196. https://doi.org/10.3109/08037051.2012.645336

    Article  PubMed  Google Scholar 

  18. Jeganathan VS, Sabanayagam C, Tai ES, Lee J, Sun C, Kawasaki R, Nagarajan S, Huey-Shi MH, Sandar M, Wong TY (2009) Effect of blood pressure on the retinal vasculature in a multi-ethnic Asian population. Hypertens Res 32(11):975–982. https://doi.org/10.1038/hr.2009.130

    Article  PubMed  Google Scholar 

  19. Kanadani FN, Figueiredo CR, Miranda RM, Cunha PL, Kanadani TCM, Dorairaj S (2015) Ocular perfusion pressure and pulsatile ocular blood flow in normal and systemic hypertensive patients. J Curr Glaucoma Pract 9(1):16–19. https://doi.org/10.5005/jp-journals-10008-1177

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang Q, Chan S, Yang JY, You B, Wang YX, Jonas JB, Wei WB (2016) Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography. Am J Ophthalmol 168:95–109. https://doi.org/10.1016/j.ajo.2016.05.005

    Article  PubMed  Google Scholar 

  21. Sng CC, Wong WL, Cheung CY, Lee J, Tai ES, Wong TY (2013) Retinal vascular fractal and blood pressure in a multiethnic population. J Hypertens 31(10):2036–2042. https://doi.org/10.1097/HJH.0b013e328362c201

    Article  CAS  PubMed  Google Scholar 

  22. Talu S (2011) Fractal analysis of normal retinal vascular network. Oftalmologia 55(4):11–16

    PubMed  Google Scholar 

  23. Kaizu Y, Nakao S, Sekiryu H, Wada I, Yamaguchi M, Hisatomi T, Ikeda Y, Kishimoto J, Sonoda KH (2018) Retinal flow density by optical coherence tomography angiography is useful for detection of nonperfused areas in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 256(12):2275–2282. https://doi.org/10.1007/s00417-018-4122-6

    Article  PubMed  Google Scholar 

  24. Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, Flaxel CJ, Lauer AK, Wilson DJ, Hornegger J, Fujimoto JG, Huang D (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112(18):E2395–E2402. https://doi.org/10.1073/pnas.1500185112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rassam SM, Patel V, Brinchmann-Hansen O, Engvold O, Kohner EM (1994) Accurate vessel width measurement from fundus photographs: a new concept. Br J Ophthalmol 78(1):24–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the subjects who participated in the study. We gratefully acknowledge those who helped us to prepare this research.

Funding

This study was funded by Tai’an science and technology development plan (grant number 2019NS175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Qilu Hospital and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Sun, H., Huang, X. et al. Retinal microvascular metrics in untreated essential hypertensives using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 259, 395–403 (2021). https://doi.org/10.1007/s00417-020-04714-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04714-8

Keywords

Navigation