Skip to main content

Advertisement

Log in

Pupillometry measurement and its relationship to retinal structural changes in children with attention deficit hyperactivity disorder

  • Pediatrics
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This study aims to assess the pupillometry measurements of the attention deficit hyperactivity disorder (ADHD) patients and to investigate their correlations with macular and RNFL thickness parameters by comparing the values with a healthy control group.

Methods

Newly diagnosed ADHD patients in a child and adolescent clinic of a tertiary hospital were consulted in an ophthalmology clinic. All participants had undergone a standard ophthalmological examination including refractometry, best corrected visual acuity, color vision, anterior segment biomicroscopy, fundoscopy, pupillometry, and OCT. All results were compared with a healthy control group at the same age.

Results

The study group consisted of 32 patients and there were 43 children in the control group. Mean pupillary velocities of ADHD patients and control group were 0.60 ± 0.11 mm/s and 0.63 ± 0.11 mm/s, and 0.49 ± 0.12 mm/s and 0.50 ± 0.10 mm/s, for right and left eyes, respectively. The difference was statistically significant for both eyes (p < 0.05). Mean RNFL thickness measurements of the study group were 90.69 ± 8.58 μm and 89.63 ± 8.14 μm for right and left eyes, respectively and those were 87.35 ± 7.67 μm and 88.77 ± 7.44 μm, respectively in the healthy group. Correlation between right pupillary velocity and RNFL thickness was statistically significant (r = 0.339, p = 0.003).

Conclusion

Higher pupillary velocity values were observed in both eyes of children with ADHD and that was positively correlated with RNFL measurements of their right eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shaw M, Hodgkins P, Caci H et al (2012) A systematic review and analysis of long-term outcomes in attention deficit hyperactivity disorder: effects of treatment and non-treatment. BMC Med 10:99. https://doi.org/10.1186/1741-7015-10-99

    Article  PubMed  PubMed Central  Google Scholar 

  2. Langley K, Fowler T, Ford T et al (2010) Adolescent clinical outcomes for young people with attention-deficit hyperactivity disorder. Br J Psychiatry 196:235–240. https://doi.org/10.1192/bjp.bp.109.066274

    Article  PubMed  Google Scholar 

  3. Simon V, Czobor P, Bálint S et al (2009) Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry 194:204–211. https://doi.org/10.1192/bjp.bp.107.048827

    Article  PubMed  Google Scholar 

  4. Spencer TJ, Biederman J, Wilens TE, Faraone SV (2002) Overview and neurobiology of attention-deficit/hyperactivity disorder. J Clin Psychiatry 63(Suppl 12):3–9

    PubMed  Google Scholar 

  5. Hoogman M, Muetzel R, Guimaraes JP et al (2019) Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry 176:531–542. https://doi.org/10.1176/appi.ajp.2019.18091033

    Article  PubMed  Google Scholar 

  6. Doggett AM (2004) ADHD and drug therapy: is it still a valid treatment? J Child Health Care 8:69–81. https://doi.org/10.1177/1367493504041856

    Article  PubMed  Google Scholar 

  7. Graziano PA, Garcia A (2016) Attention-deficit hyperactivity disorder and children’s emotion dysregulation: a meta-analysis. Clin Psychol Rev 46:106–123

    Article  Google Scholar 

  8. Musser ED, Nigg JT (2019) Emotion dysregulation across emotion systems in attention deficit/hyperactivity disorder. J Clin Child Adolesc Psychol 48:153–165. https://doi.org/10.1080/15374416.2016.1270828

    Article  PubMed  Google Scholar 

  9. Morris SSJ, Musser ED, Tenenbaum RB et al (2020) Emotion regulation via the autonomic nervous system in children with attention-deficit/hyperactivity disorder (ADHD): replication and extension. J Abnorm Child Psychol 48:361–373. https://doi.org/10.1007/s10802-019-00593-8

    Article  PubMed  Google Scholar 

  10. Kara K, Karaman D, Erdem U et al (2013) Investigation of autonomic nervous system functions by pupillometry in children with attention deficit hyperactivity disorder. Klin Psikofarmakol Bülteni-Bulletin Clin Psychopharmacol 23:49–56. https://doi.org/10.5455/bcp.20121130085850

    Article  Google Scholar 

  11. Sekaninova N, Mestanik M, Mestanikova A et al (2019) Novel approach to evaluate central autonomic regulation in attention deficit/hyperactivity disorder (ADHD). Physiol Res 68:531–545. https://doi.org/10.33549/physiolres.934160

    Article  CAS  PubMed  Google Scholar 

  12. Bellato A, Arora I, Hollis C, Groom MJ (2020) Is autonomic nervous system function atypical in attention deficit hyperactivity disorder (ADHD)? A systematic review of the evidence. Neurosci Biobehav Rev 108:182–206. https://doi.org/10.1016/j.neubiorev.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  13. Girkin CA (2003) Evaluation of the pupillary light response as an objective measure of visual function. Ophthalmol Clin N Am 16:143–153

    Article  Google Scholar 

  14. Molnar A, Holmström G, Larsson E (2015) Macular thickness assessed with spectral domain OCT in a population-based study of children: normative data, repeatability and reproducibility and comparison with time domain OCT. Acta Ophthalmol 93:470–475. https://doi.org/10.1111/aos.12695

    Article  PubMed  Google Scholar 

  15. Chang DS, Boland MV, Arora KS et al (2013) Symmetry of the pupillary light reflex and its relationship to retinal nerve fiber layer thickness and visual field defect. Investig Ophthalmol Vis Sci 54:5596–5601. https://doi.org/10.1167/iovs.13-12142

    Article  Google Scholar 

  16. Bush G, Valera EM, Seidman LJ (2005) Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol Psychiatry 57:1273–1284. https://doi.org/10.1016/j.biopsych.2005.01.034

    Article  PubMed  Google Scholar 

  17. Perlov E, Philipsen A, Matthies S et al (2009) Spectroscopic findings in attention-deficit/hyperactivity disorder: review and meta-analysis. World J Biol Psychiatry 10:355–365. https://doi.org/10.1080/15622970802176032

    Article  PubMed  Google Scholar 

  18. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  Google Scholar 

  19. Reimer J, McGinley MJ, Liu Y et al (2016) Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms13289

    Article  CAS  Google Scholar 

  20. Wainstein G, Rojas-Líbano D, Crossley NA et al (2017) Pupil size tracks attentional performance in attention-deficit/hyperactivity disorder. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-08246-w

    Article  CAS  Google Scholar 

  21. Mestanikova A, Ondrejka I, Mestanik M et al (2017) Pupillary light reflex is altered in adolescent depression. Physiol Res 66:277–284

    Article  Google Scholar 

  22. Wang Y, Zekveld AA, Naylor G et al (2016) Parasympathetic nervous system dysfunction, as identified by pupil light reflex, and its possible connection to hearing impairment. PLoS One 11:e0153566. https://doi.org/10.1371/journal.pone.0153566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feifel D, Farber RH, Clementz BA et al (2004) Inhibitory deficits in ocular motor behavior in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 56:333–339. https://doi.org/10.1016/j.biopsych.2004.06.019

    Article  PubMed  Google Scholar 

  24. Ley D, Marsal K, Dahlgren J, Hellstrom A (2004) Abnormal retinal optic nerve morphology in young adults after intrauterine growth restriction. Pediatr Res 56:139–143. https://doi.org/10.1203/01.PDR.0000129660.32875.09

    Article  PubMed  Google Scholar 

  25. Ascaso FJ, Rodriguez-Jimenez R, Cabezón L et al (2015) Retinal nerve fiber layer and macular thickness in patients with schizophrenia: influence of recent illness episodes. Psychiatry Res 229:230–236. https://doi.org/10.1016/j.psychres.2015.07.028

    Article  PubMed  Google Scholar 

  26. Schönfeldt-Lecuona C, Schmidt A, Kregel T et al (2018) Retinal changes in patients with major depressive disorder – a controlled optical coherence tomography study. J Affect Disord 227:665–671. https://doi.org/10.1016/j.jad.2017.11.077

    Article  PubMed  Google Scholar 

  27. Chang DS, Xu L, Boland MV, Friedman DS (2013) Accuracy of pupil assessment for the detection of glaucoma. Ophthalmology 120:2217–2225. https://doi.org/10.1016/j.ophtha.2013.04.012

    Article  PubMed  Google Scholar 

  28. Gracitelli CPB, Duque-Chica GL, Moura AL et al (2014) A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma. Invest Ophthalmol Vis Sci 55:7997–8005. https://doi.org/10.1167/iovs.14-15146

    Article  PubMed  Google Scholar 

  29. Grönlund MA, Aring E, Landgren M, Hellström A (2007) Visual function and ocular features in children and adolescents with attention deficit hyperactivity disorder, with and without treatment with stimulants. Eye 21:494–502. https://doi.org/10.1038/sj.eye.6702240

    Article  PubMed  Google Scholar 

  30. Franz AP, Bolat GU, Bolat H et al (2018) Attention-deficit/hyperactivity disorder and very preterm/very low birth weight: a meta-analysis. Pediatrics 141:e20171645. https://doi.org/10.1542/peds.2017-1645

    Article  PubMed  Google Scholar 

  31. Pliszka SR (2005) The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1385–1390. https://doi.org/10.1016/j.biopsych.2004.08.026

    Article  CAS  PubMed  Google Scholar 

  32. Sharma A, Couture J (2014) A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Ann Pharmacother 48:209–225. https://doi.org/10.1177/1060028013510699

    Article  PubMed  Google Scholar 

  33. Arnsten AFT, Pliszka SR (2011) Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacol Biochem Behav 99:211–216. https://doi.org/10.1016/j.pbb.2011.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Waitzman MB, Woods WD, Cheek WV (1979) Effects of prostaglandins and norepinephrine on ocular pressure and pupil size in rabbits following bilateral cervical ganglionectomy. Invest Ophthalmol Vis Sci 18:52–60

    CAS  PubMed  Google Scholar 

  35. Spiers AS, Calne DB, Vakil SD, French TM (1971) Action of thymoxamine on mydriasis induced by levodopa and dopamine. Br Med J 2:438–439. https://doi.org/10.1136/bmj.2.5759.438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Giza E, Fotiou D, Bostantjopoulou S et al (2011) Pupil light reflex in Parkinson’s disease: evaluation with pupillometry. Int J Neurosci 121:37–43. https://doi.org/10.3109/00207454.2010.526730

    Article  PubMed  Google Scholar 

  37. Bartošová O, Bonnet C, Ulmanová O et al (2018) Pupillometry as an indicator of l-DOPA dosages in Parkinson’s disease patients. J Neural Transm 125:699–703. https://doi.org/10.1007/s00702-017-1829-1

    Article  CAS  PubMed  Google Scholar 

  38. Dolder PC, Müller F, Schmid Y et al (2018) Direct comparison of the acute subjective, emotional, autonomic, and endocrine effects of MDMA, methylphenidate, and modafinil in healthy subjects. Psychopharmacology 235:467–479. https://doi.org/10.1007/s00213-017-4650-5

    Article  CAS  PubMed  Google Scholar 

  39. Winston M, Zhou A, Rand CM et al (2020) Pupillometry measures of autonomic nervous system regulation with advancing age in a healthy pediatric cohort. Clin Auton Res 30:43–51. https://doi.org/10.1007/s10286-019-00639-3

    Article  PubMed  Google Scholar 

  40. Williams K, Thomson D, Seto I et al (2012) Standard 6: age groups for pediatric trials. Pediatrics 129:S153–S160

    Article  Google Scholar 

  41. Dalgliesh JD, Tariq YM, Burlutsky G, Mitchell P (2015) Symmetry of retinal parameters measured by spectral-domain OCT in normal young adults. J Glaucoma 24:20–24. https://doi.org/10.1097/IJG.0b013e318287ac2f

    Article  PubMed  Google Scholar 

  42. Samarawickrama C, Wang JJ, Huynh SC et al (2009) Macular thickness, retinal thickness, and optic disk parameters in dominant compared with nondominant eyes. J AAPOS 13:142–147. https://doi.org/10.1016/j.jaapos.2008.11.004

    Article  PubMed  Google Scholar 

  43. Hilz MJ, Dütsch M, Perrine K et al (2001) Hemispheric influence on autonomic modulation and baroreflex sensitivity. Ann Neurol 49:575–584. https://doi.org/10.1002/ana.1006

    Article  CAS  PubMed  Google Scholar 

  44. Bär K-J, Boettger MK, Till S et al (2005) Lateralization of pupillary light reflex parameters. Clin Neurophysiol 116:790–798. https://doi.org/10.1016/j.clinph.2004.11.007

    Article  PubMed  Google Scholar 

  45. DeCarlo DK, Swanson M, McGwin G et al (2016) ADHD and vision problems in the National Survey of Children’s Health. Optom Vis Sci 93:459–465. https://doi.org/10.1097/OPX.0000000000000823

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mezer E, Wygnanski-Jaffe T (2012) Do children and adolescents with attention deficit hyperactivity disorder have ocular abnormalities? Eur J Ophthalmol 22:931–935. https://doi.org/10.5301/ejo.5000145

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Mehmet Gökhan Aslan, Murat Kaçar, Hüseyin Fındık, and Murat Okutucu. The first draft of the manuscript was written by Mehmet Gökhan Aslan. Proofreading was performed by Feyzahan Uzun and Çiçek Hocaoğlu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mehmet Gökhan Aslan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Recep Tayyip Erdogan University research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants and their parents included in this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, M.G., Uzun, F., Fındık, H. et al. Pupillometry measurement and its relationship to retinal structural changes in children with attention deficit hyperactivity disorder. Graefes Arch Clin Exp Ophthalmol 258, 1309–1317 (2020). https://doi.org/10.1007/s00417-020-04658-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04658-z

Keywords

Navigation