Skip to main content

Advertisement

Log in

Changes in choroidal vascular parameters following pan-retinal photocoagulation using swept-source optical coherence tomography

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To assess the effect of pan-retinal photocoagulation (PRP) on choroidal vascular parameters in eyes with advanced diabetic retinopathy (DR).

Methods

Forty patients (65 eyes) with severe nonproliferative DR or proliferative DR who underwent PRP were included. Changes in choroidal vascular parameters were assessed at 3, 6, and 12 months after PRP by using swept-source optical coherence tomography (OCT) and OCT angiography and were compared with baseline values.

Results

Choroidal vascularity index (CVI) significantly decreased from 66.27% ± 1.55% at baseline to 65.85% ± 1.61%, 65.77% ± 1.29%, and 65.74% ± 1.60% at 3, 6, and 12 months after PRP, respectively. The ratio of luminal area to stromal area (L/S ratio) also significantly decreased from 1.98 ± 0.15 at baseline to 1.94 ± 0.14, 1.95 ± 0.13, and 1.93 ± 0.14 at 3, 6, and 12 months after PRP, respectively. The subfoveal choroidal thickness (SFCT) similarly showed a significant decrease from 319.50 ± 56.64 μm at baseline to 299. 07 ± 51.14 μm, 294.70 ± 58.96 μm, and 280.93 ± 53.57 μm at 3, 6, and 12 months after PRP, respectively. However, the choriocapillaris vessel density in both the fovea and parafovea showed no significant differences following PRP.

Conclusion

Eyes with advanced DR showed a significant reduction in CVI, L/S ratio, and SFCT over 12 months after PRP treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zheng Y, He M, Congdon N (2012) The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol 60:428–431. https://doi.org/10.4103/0301-4738.100542

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hidayat AA, Fine BS (1985) Diabetic choroidopathy. Light and electron microscopic observations of seven cases. Ophthalmology 92:512–522

    Article  CAS  PubMed  Google Scholar 

  3. Cao J, McLeod S, Merges CA, Lutty GA (1998) Choriocapillaris degeneration and related pathologic changes in human diabetic eyes. Arch Ophthalmol 116:589–597

    Article  CAS  PubMed  Google Scholar 

  4. Lutty GA (2017) Diabetic choroidopathy. Vis Res 139:161–167. https://doi.org/10.1016/j.visres.2017.04.011

    Article  PubMed  Google Scholar 

  5. Weinberger D, Kramer M, Priel E, Gaton DD, Axer-Siegel R, Yassur Y (1998) Indocyanine green angiographic findings in nonproliferative diabetic retinopathy. Am J Ophthalmol 126:238–247

    Article  CAS  PubMed  Google Scholar 

  6. Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29:144–168. https://doi.org/10.1016/j.preteyeres.2009.12.002

    Article  PubMed  Google Scholar 

  7. Kim JT, Lee DH, Joe SG, Kim JG, Yoon YH (2013) Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci 54:3378–3384. https://doi.org/10.1167/iovs.12-11503

    Article  PubMed  Google Scholar 

  8. Zhang Z, Meng X, Wu Z, Zou W, Zhang J, Zhu D, Chen T, Zhang Q (2015) Changes in choroidal thickness after Panretinal photocoagulation for diabetic retinopathy: a 12-week longitudinal study. Invest Ophthalmol Vis Sci 56:2631–2638. https://doi.org/10.1167/iovs.14-16226

    Article  PubMed  Google Scholar 

  9. Okamoto M, Matsuura T, Ogata N (2016) Effects of PANRETINAL photocoagulation on choroidal thickness and choroidal blood flow in patients with severe NONPROLIFERATIVE diabetic retinopathy. Retina 36:805–811. https://doi.org/10.1097/iae.0000000000000800

    Article  PubMed  Google Scholar 

  10. Tan KA, Laude A, Yip V, Loo E, Wong EP, Agrawal R (2016) Choroidal vascularity index - a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus? Acta Ophthalmol 94:e612–e616. https://doi.org/10.1111/aos.13044

    Article  PubMed  Google Scholar 

  11. Agrawal R, Chhablani J, Tan KA, Shah S, Sarvaiya C, Banker A (2016) Choroidal vascularity index in central serous CHORIORETINOPATHY. Retina 36:1646–1651. https://doi.org/10.1097/iae.0000000000001040

    Article  PubMed  Google Scholar 

  12. Wei X, Ting DSW, Ng WY, Khandelwal N, Agrawal R, Cheung CMG (2017) CHOROIDAL VASCULARITY INDEX: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration. Retina 37:1120–1125. https://doi.org/10.1097/iae.0000000000001312

    Article  PubMed  Google Scholar 

  13. Ting DS, Cheung GC, Lim LS, Yeo IY (2015) Comparison of swept source optical coherence tomography and spectral domain optical coherence tomography in polypoidal choroidal vasculopathy. Clin Exp Ophthalmol 43:815–819. https://doi.org/10.1111/ceo.12580

    Article  PubMed  Google Scholar 

  14. Wang JC, Lains I, Silverman RF, Sobrin L, Vavvas DG, Miller JW, Miller JB (2018) Visualization of Choriocapillaris and choroidal vasculature in healthy eyes with En face swept-source optical coherence tomography versus angiography. Transl Vis Sci Technol 7:25. https://doi.org/10.1167/tvst.7.6.25

    Article  PubMed  PubMed Central  Google Scholar 

  15. Early Treatment Diabetic Retinopathy Study Research Group (1991) Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology 98:766–785

    Article  Google Scholar 

  16. Early Treatment Diabetic Retinopathy Study Research Group (1991) Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Ophthalmology 98:823–833

    Article  Google Scholar 

  17. Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie house classification. ETDRS report number 10. Ophthalmology 98:786–806

    Article  Google Scholar 

  18. Lee SH, Kim J, Chung H, Kim HC (2014) Changes of choroidal thickness after treatment for diabetic retinopathy. Curr Eye Res 39:736–744. https://doi.org/10.3109/02713683.2013.867064

    Article  CAS  PubMed  Google Scholar 

  19. Ohara Z, Tabuchi H, Nakakura S, Yoshizumi Y, Sumino H, Maeda Y, Kiuchi Y (2018) Changes in choroidal thickness in patients with diabetic retinopathy. Int Ophthalmol 38:279–286. https://doi.org/10.1007/s10792-017-0459-9

    Article  PubMed  Google Scholar 

  20. Kang HM, Lee NE, Choi JH, Koh HJ, Lee SC (2017) Significant reduction of both PERIPAPILLARY and SUBFOVEAL choroidal thickness after PANRETINAL photocoagulation in patients with type 2 diabetes. Retina. https://doi.org/10.1097/iae.0000000000001804

    Article  PubMed  Google Scholar 

  21. Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Uchino E, Terasaki H, Tomita M (2014) Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci 55:3893–3899. https://doi.org/10.1167/iovs.14-14447

    Article  PubMed  Google Scholar 

  22. Gupta C, Tan R, Mishra C, Khandelwal N, Raman R, Kim R, Agrawal R, Sen P (2018) Choroidal structural analysis in eyes with diabetic retinopathy and diabetic macular edema-a novel OCT based imaging biomarker. PLoS One 13:e0207435. https://doi.org/10.1371/journal.pone.0207435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim M, Ha MJ, Choi SY, Park YH (2018) Choroidal vascularity index in type-2 diabetes analyzed by swept-source optical coherence tomography. Sci Rep 8:70. https://doi.org/10.1038/s41598-017-18511-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grunwald JE, Riva CE, Brucker AJ, Sinclair SH, Petrig BL (1986) Effect of panretinal photocoagulation on retinal blood flow in proliferative diabetic retinopathy. Ophthalmology 93:590–595

    Article  CAS  PubMed  Google Scholar 

  25. Grunwald JE, Brucker AJ, Petrig BL, Riva CE (1989) Retinal blood flow regulation and the clinical response to panretinal photocoagulation in proliferative diabetic retinopathy. Ophthalmology 96:1518–1522

    Article  CAS  PubMed  Google Scholar 

  26. Patel V, Rassam S, Newsom R, Wiek J, Kohner E (1992) Retinal blood flow in diabetic retinopathy. BMJ 305:678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song Y, Tani T, Omae T, Ishibazawa A, Yoshioka T, Takahashi K, Akiba M, Yoshida A (2018) Retinal blood flow reduction after panretinal photocoagulation in type 2 diabetes mellitus: Doppler optical coherence tomography flowmeter pilot study. PLoS One 13:e0207288. https://doi.org/10.1371/journal.pone.0207288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Savage HI, Hendrix JW, Peterson DC, Young H, Wilkinson CP (2004) Differences in pulsatile ocular blood flow among three classifications of diabetic retinopathy. Invest Ophthalmol Vis Sci 45:4504–4509. https://doi.org/10.1167/iovs.04-0077

    Article  PubMed  Google Scholar 

  29. Iwase T, Kobayashi M, Yamamoto K, Ra E, Terasaki H (2017) Effects of photocoagulation on ocular blood flow in patients with severe non-proliferative diabetic retinopathy. PLoS One 12:e0174427. https://doi.org/10.1371/journal.pone.0174427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yun C, Huh J, Ahn SM, Lee B, Kim JT, Hwang SY, Kim SW, Oh J (2018) Choriocapillaris flow features and choroidal vasculature in the fellow eyes of patients with acute central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-018-4179-2

    Article  PubMed  Google Scholar 

  31. Ahn J, Yoo G, Kim JT, Kim SW, Oh J (2018) Choriocapillaris layer imaging with swept-source optical coherence tomography angiography in lamellar and full-thickness macular hole. Graefes Arch Clin Exp Ophthalmol 256:11–21. https://doi.org/10.1007/s00417-017-3814-7

    Article  PubMed  Google Scholar 

  32. Sayanagi K, Ikuno Y, Uematsu S, Nishida K (2017) Features of the choriocapillaris in myopic maculopathy identified by optical coherence tomography angiography. Br J Ophthalmol 101:1524–1529. https://doi.org/10.1136/bjophthalmol-2016-309628

    Article  PubMed  Google Scholar 

  33. Wilson DJ, Green WR (1987) Argon laser panretinal photocoagulation for diabetic retinopathy. Scanning electron microscopy of human choroidal vascular casts. Arch Ophthalmol 105:239–242

    Article  CAS  PubMed  Google Scholar 

  34. Lee CJ, Smith JH, Kang-Mieler JJ, Budzynski E, Linsenmeier RA (2011) Decreased circulation in the feline choriocapillaris underlying retinal photocoagulation lesions. Invest Ophthalmol Vis Sci 52:3398–3403. https://doi.org/10.1167/iovs.10-6560

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tan CS, Ouyang Y, Ruiz H, Sadda SR (2012) Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:261–266. https://doi.org/10.1167/iovs.11-8782

    Article  PubMed  Google Scholar 

  36. Kinoshita T, Mitamura Y, Shinomiya K, Egawa M, Iwata A, Fujihara A, Ogushi Y, Semba K, Akaiwa K, Uchino E, Sonoda S, Sakamoto T (2017) Diurnal variations in luminal and stromal areas of choroid in normal eyes. Br J Ophthalmol 101:360–364. https://doi.org/10.1136/bjophthalmol-2016-308594

    Article  PubMed  Google Scholar 

  37. Sarwar S, Hassan M, Soliman MK, Halim MS, Sadiq MA, Afridi R, Agarwal A, Do DV, Nguyen QD, Sepah YJ (2018) Diurnal variation of choriocapillaris vessel flow density in normal subjects measured using optical coherence tomography angiography. Int J Retina Vitreous 4:37. https://doi.org/10.1186/s40942-018-0140-0

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tan KA, Gupta P, Agarwal A, Chhablani J, Cheng CY, Keane PA, Agrawal R (2016) State of science: choroidal thickness and systemic health. Surv Ophthalmol 61:566–581. https://doi.org/10.1016/j.survophthal.2016.02.007

    Article  PubMed  Google Scholar 

  39. Agrawal R, Wei X, Goud A, Vupparaboina KK, Jana S, Chhablani J (2017) Influence of scanning area on choroidal vascularity index measurement using optical coherence tomography. Acta Ophthalmol 95:e770–e775. https://doi.org/10.1111/aos.13442

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF-2015R1C1A1A01054285; NRF-2019R1H1A1035593) by the Ministry of Science, Information & Communication Technology (ICT), and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jee Taek Kim.

Ethics declarations

Conflict of interest

Author JT Kim declares that he has no conflict of interest. Author N Park declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Chung-Ang University Hospital, Seoul, South Korea and with the 1964 Helsinki declaration.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Meeting presentations

This study was presented as a e-poster at the 120th annual meeting of the Korean Ophthalmological Society (02-04 Nov), Seoul, Korea.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.T., Park, N. Changes in choroidal vascular parameters following pan-retinal photocoagulation using swept-source optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 258, 39–47 (2020). https://doi.org/10.1007/s00417-019-04475-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04475-z

Keywords

Navigation