Skip to main content

Advertisement

Log in

Effects of posterior scleral reinforcement in pathological myopia: a 3-year follow-up study

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the effects of posterior sclera reinforcement (PSR) in refractive outcomes, choroidal thickness (CT), and retinal thickness (RT) during a 3-year follow-up in eyes with pathological myopia.

Methods

Thirty-eight eyes of 26 adults with pathological myopia who underwent PSR (the PSR group) and 30 eyes of 18 adults with matched age and myopia who did not receive PSR treatment (the control group) were followed up with measurements of axial length (AL), spherical equivalent (SE), best corrected visual acuity (BCVA), CT, and RT at baseline, 1 and 3 months, and 1, 2, and 3 years postoperatively. Data were analyzed by repeated measures analysis of variance and independent-samples t test.

Results

In the PSR group, AL, SE, BCVA, and CT were tending to be relatively stable and no statistically significant changes were found during the follow-up (all P > 0.05). In contrast, in the control group, compared with the measurements taken at baseline, AL, SE, BCVA, and CT altered gradually from 1 month onward to 3 years postoperatively. At 2-year and 3-year follow-ups, significant differences in AL, SE, BCVA, and CT were noted between the PSR group and the control group (all P < 0.05). RTs of the center subfield and the inner ring were equal to the baseline in the control group; however, RTs of the center subfield at 1 year, 2 years, and 3 years postoperatively significantly slightly reduced compared with those at the baseline in the PSR group (all P < 0.05).

Conclusions

The effects of PSR in restraining eyeball elongation, stabilizing vision, and strengthening the structure of posterior pole are more prominent 2 years or more postoperatively compared with the natural progression of pathological myopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morgan IG, Ohno-Matsui K, Saw SM (2012) Myopia. Lancet 379(9827):1739–1748. https://doi.org/10.1016/S0140-6736(12)60272-4

    Article  PubMed  Google Scholar 

  2. Xu L, Wang YX, Li YB, Wang Y, Cui TT, Li JJ, Jonas JB (2006) Causes of blindness and visual impairment in urban and rural areas in Beijing - the Beijing eye study. Ophthalmology 113(7):1134–1141. https://doi.org/10.1016/j.ophtha.2006.01.035

    Article  PubMed  Google Scholar 

  3. Liang YB, Friedman DS, Wong TY, Zhan SY, Sun LP, Wang JJ, Duan XR, Yang XH, Wang FH, Zhou Q, Wang NL, Handan Eye Study G (2008) Prevalence and causes of low vision and blindness in a rural Chinese adult population: the Handan Eye Study. Ophthalmology 115(11):1965–1972. https://doi.org/10.1016/j.ophtha.2008.05.030

    Article  PubMed  Google Scholar 

  4. Liu HH, Xu L, Wang YX, Wang S, You QS, Jonas JB (2010) Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing Eye Study. Ophthalmology 117(9):1763–1768. https://doi.org/10.1016/j.ophtha.2010.01.020

    Article  PubMed  Google Scholar 

  5. Tideman JWL, Snabel MCC, Tedja MS, van Rijn GA, Wong KT, Kuijpers RWAM, Vingerling JR, Hofman A, Buitendijk GHS, Keunen JEE, Boon CJF, Geerards AJM, Luyten GPM, Verhoeven VJM, Klaver CCW (2016) Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia. JAMA Ophthalmol 134(12):1355–1363. https://doi.org/10.1001/jamaophthalmol.2016.4009

    Article  PubMed  Google Scholar 

  6. Neelam K, Cheung CMG, Ohno-Matsui K, Lai TYY, Wong TY (2012) Choroidal neovascularization in pathological myopia. Prog Retin Eye Res 31(5):495–525. https://doi.org/10.1016/j.preteyeres.2012.04.001

    Article  PubMed  CAS  Google Scholar 

  7. Verhoeven VJ, Wong KT, Buitendijk GH, Hofman A, Vingerling JR, Klaver CC (2015) Visual consequences of refractive errors in the general population. Ophthalmology 122(1):101–109. https://doi.org/10.1016/j.ophtha.2014.07.030

    Article  PubMed  Google Scholar 

  8. Ohno-Matsui K, Kawasaki R, Jonas JB, Cheung CMG, Saw SM, Verhoeven VJM, Klaver CCW, Moriyama M, Shinohara K, Kawasaki Y, Yamazaki M, Meuer S, Ishibashi T, Yasuda M, Yamashita H, Sugano A, Wang JJ, Mitchell P, Wong TY, META M-APM (2015) International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol 159(5):877–883. https://doi.org/10.1016/j.ajo.2015.01.022

    Article  PubMed  Google Scholar 

  9. Verhoeven VJM, Snabel MCC, van Rijn GA, Buitendijk GHS, Vvong KT, Keunen JEE, Boon CJF, Geerards AJM, Luyten GPM, Klaver CCW (2016) Axial length and visual function in high myopia. Invest Ophthalmol Vis Sci 57(12)

  10. Snyder AA, Thompson FB (1972) A simplified technique for surgical treatment of degenerative myopia. Am J Ophthalmol 74(2):273–277

    Article  PubMed  CAS  Google Scholar 

  11. Thompson FB (1978) A simplified scleral reinforcement technique. Am J Ophthalmol 86(6):782–790

    Article  PubMed  CAS  Google Scholar 

  12. Zhu SQ, Zheng LY, Pan AP, Yu AY, Wang QM, Xue AQ (2016) The efficacy and safety of posterior scleral reinforcement using genipin cross-linked sclera for macular detachment and retinoschisis in highly myopic eyes. Br J Ophthalmol 100(11):1470–1475. https://doi.org/10.1136/bjophthalmol-2015-308087

    Article  PubMed  Google Scholar 

  13. Zhu Z, Ji X, Zhang J, Ke G (2009) Posterior scleral reinforcement in the treatment of macular retinoschisis in highly myopic patients. Clin Exp Ophthalmol 37(7):660–663. https://doi.org/10.1111/j.1442-9071.2009.02111.x

    Article  PubMed  Google Scholar 

  14. Chen Z, Xue F, Zhou J, Qu X, Zhou X (2016) Effects of orthokeratology on choroidal thickness and axial length. Optom Vis Sci 93(9):1064–1071. https://doi.org/10.1097/OPX.0000000000000894

    Article  PubMed  Google Scholar 

  15. Li Z, Cui D, Hu Y, Ao S, Zeng J, Yang X (2017) Choroidal thickness and axial length changes in myopic children treated with orthokeratology. Cont Lens Anterior Eye 40(6):417–423. https://doi.org/10.1016/j.clae.2017.09.010

    Article  PubMed  Google Scholar 

  16. Zhang Z, Zhou Y, Xie Z, Chen T, Gu Y, Lu S, Wu Z (2016) The effect of topical atropine on the choroidal thickness of healthy children. Sci Rep 6:34936. https://doi.org/10.1038/srep34936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Margolis R, Spaide RF (2009) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 147(5):811–815. https://doi.org/10.1016/j.ajo.2008.12.008

    Article  PubMed  Google Scholar 

  18. Dhoot DS, Huo SY, Yuan A, Xu D, Srivistava S, Ehlers JP, Traboulsi E, Kaiser PK (2013) Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol 97(1):66–69. https://doi.org/10.1136/bjophthalmol-2012-301917

    Article  PubMed  Google Scholar 

  19. Shen ZM, Zhang ZY, Zhang LY, Li ZG, Chu RY (2015) Posterior scleral reinforcement combined with patching therapy for pre-school children with unilateral high myopia. Graefes Arch Clin Exp Ophthalmol 253(8):1391–1395. https://doi.org/10.1007/s00417-015-2963-9

    Article  PubMed  Google Scholar 

  20. Xue A, Zheng L, Tan G, Wu S, Wu Y, Cheng L, Qu J (2018) Genipin-crosslinked donor sclera for posterior scleral contraction/reinforcement to fight progressive myopia. Invest Ophthalmol Vis Sci 59(8):3564–3573. https://doi.org/10.1167/iovs.17-23707

    Article  PubMed  Google Scholar 

  21. Xue A, Bao F, Zheng L, Wang Q, Cheng L, Qu J (2014) Posterior scleral reinforcement on progressive high myopic young patients. Optom Vis Sci 91(4):412–418. https://doi.org/10.1097/OPX.0000000000000201

    Article  PubMed  Google Scholar 

  22. Gupta P, Thakku SG, Saw SM, Tan M, Lim E, Tan M, Cheung CMG, Wong TY, Cheng CY (2017) Characterization of choroidal morphologic and vascular features in young men with high myopia using spectral-domain optical coherence tomography. Am J Ophthalmol 177:27–33. https://doi.org/10.1016/j.ajo.2017.02.001

    Article  PubMed  Google Scholar 

  23. Gupta P, Cheung CY, Saw SM, Bhargava M, Tan CS, Tan M, Yang A, Tey F, Nah G, Zhao P, Wong TY, Cheng CY (2015) Peripapillary choroidal thickness in young Asians with high myopia. Invest Ophthalmol Vis Sci 56(3):1475–1481. https://doi.org/10.1167/iovs.14-15742

    Article  PubMed  Google Scholar 

  24. Garcia-Ben A, Kamal-Salah R, Garcia-Basterra I, Gonzalez Gomez A, Morillo Sanchez MJ, Garcia-Campos JM (2017) Two- and three-dimensional topographic analysis of pathologically myopic eyes with dome-shaped macula and inferior staphyloma by spectral domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 255(5):903–912. https://doi.org/10.1007/s00417-017-3587-z

    Article  PubMed  Google Scholar 

  25. Flores-Moreno I, Lugo F, Duker JS, Ruiz-Moreno JM (2013) The relationship between axial length and choroidal thickness in eyes with high myopia. Am J Ophthalmol 155(2):314–319 e311. https://doi.org/10.1016/j.ajo.2012.07.015

    Article  PubMed  Google Scholar 

  26. Fledelius HC, Jacobsen N, Li XQ, Goldschmidt E (2018) Choroidal thickness at age 66 years in the Danish high myopia study cohort 1948 compared with follow-up data on visual acuity over 40 years: a clinical update adding spectral domain optical coherence tomography. Acta Ophthalmol 96(1):46–50. https://doi.org/10.1111/aos.13659

    Article  PubMed  Google Scholar 

  27. Ikuno Y, Maruko I, Yasuno Y, Miura M, Sekiryu T, Nishida K, Iida T (2011) Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 52(8):5536–5540. https://doi.org/10.1167/iovs.10-6811

    Article  PubMed  Google Scholar 

  28. El Matri L, Bouladi M, Chebil A, Kort F, Bouraoui R, Largueche L, Mghaieth F (2012) Choroidal thickness measurement in highly myopic eyes using SD-OCT. Ophthalmic Surg Lasers Imaging 43(6 Suppl):S38–S43. https://doi.org/10.3928/15428877-20121001-02

    Article  PubMed  Google Scholar 

  29. Nickla DL, Totonelly K (2015) Choroidal thickness predicts ocular growth in normal chicks but not in eyes with experimentally altered growth. Clin Exp Optom 98(6):564–570. https://doi.org/10.1111/cxo.12317

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wildsoet C, Wallman J (1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vis Res 35(9):1175–1194

    Article  PubMed  CAS  Google Scholar 

  31. Wu H, Chen W, Zhao F, Zhou Q, Reinach PS, Deng L, Ma L, Luo S, Srinivasalu N, Pan M, Hu Y, Pei X, Sun J, Ren R, Xiong Y, Zhou Z, Zhang S, Tian G, Fang J, Zhang L, Lang J, Wu D, Zeng C, Qu J, Zhou X (2018) Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A 115(30):E7091–E7100. https://doi.org/10.1073/pnas.1721443115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Harper AR, Summers JA (2015) The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development. Exp Eye Res 133:100–111. https://doi.org/10.1016/j.exer.2014.07.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. McBrien NA, Cornell LM, Gentle A (2001) Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci 42(10):2179–2187

    PubMed  CAS  Google Scholar 

  34. Qi Y, Duan AL, You QS, Jonas JB, Wang N (2015) Posterior scleral reinforcement and vitrectomy for myopic foveoschisis in extreme myopia. Retina 35(2):351–357. https://doi.org/10.1097/IAE.0000000000000313

    Article  PubMed  Google Scholar 

  35. Zhu SQ, Pan AP, Zheng LY, Wu Y, Xue AQ (2018) Posterior scleral reinforcement using genipin-cross-linked sclera for macular hole retinal detachment in highly myopic eyes. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2017-311340

  36. Chan MP, Grossi CM, Khawaja AP, Yip JL, Khaw KT, Patel PJ, Khaw PT, Morgan JE, Vernon SA, Foster PJ, Eye UKB, Vision C (2016) Associations with intraocular pressure in a large cohort: results from the UK Biobank. Ophthalmology 123(4):771–782. https://doi.org/10.1016/j.ophtha.2015.11.031

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (81700814, 81703185, and 81870644), the Shenyang Science and Technology Bureau (18-014-4-46), and the Foundation of Liaoning Province Education Administration (LK201641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Fig. 1

Schema of above, below and back demonstration after the U-shaped sclera buckle inserting underneath the inferior oblique, inferior rectus and lateral rectus, wrapping around the posterior pole. The scleral buckle is sutured to the nasal side of the sclera near the attachments of the inferior rectus and the superior rectus. (PNG 300 kb)

High Resolution Image (TIF 1910 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Xu, J., Ding, X. et al. Effects of posterior scleral reinforcement in pathological myopia: a 3-year follow-up study. Graefes Arch Clin Exp Ophthalmol 257, 607–617 (2019). https://doi.org/10.1007/s00417-018-04212-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-04212-y

Keywords

Navigation