Skip to main content

Advertisement

Log in

Shifts in renin–angiotensin system components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa region of streptozotocin-induced diabetic mice

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to analyse shifts in renin–angiotensin system (RAS) components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa (LC) region in streptozotocin (STZ)-induced diabetic mice.

Methods

Six months after diabetes induction, the retinal vessels of male C57BL/6 J mice were observed by colour photography, fundus fluorescein angiography (FFA), and immunofluorescent staining following incubation with CD31. Immunofluorescence for glial fibrillary acidic protein (GFAP), alpha-smooth muscle actin (α-SMA),and NG2 was also performed. Angiotensin-converting enzyme 1 (ACE1), angiotensin II type I receptor (AT1R), renin, hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and haeme oxygenase 1 (HO-1) expression levels were confirmed by immunohistochemical and western blotting analyses.

Results

Compared with control mice, diabetic mice had significantly higher blood glucose concentrations (p < 0.001) and significantly lower body weights (p < 0.001). Colour photography and FFA did not reveal any vessel abnormalities in the diabetic mice; however, immunostaining of whole-mount retinas revealed an increased number of retinal vessels. Furthermore, histopathological staining showed significant reduction in the whole retinal thickness. GFAP expression was slightly higher, whereas fewer NG2+ pericytes were observed in diabetic mice than in control mice. ACE1, AT1R, renin, HIF-1α, VEGF, VEGFR2, and HO-1 expression were up-regulated in the LC of the STZ-induced diabetic mice.

Conclusions

Collectively, ACE 1, AT1R, HIF-1α, VEGF, VEGFR2, and HO-1 activation in the LC region in diabetic mice may be involved in diabetes via the RAS and induction of angiogenesis and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li WL, Zheng HC, Bukuru J, De Kimpe N (2004) Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 92:1–21. https://doi.org/10.1016/j.jep.2003.12.031

    Article  CAS  PubMed  Google Scholar 

  2. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  3. Simo R, Hernandez C (2012) Prevention and treatment of diabetic retinopathy: evidence from large, randomized trials. The emerging role of fenofibrate. Rev Recent Clin Trials 7:71–80

    Article  CAS  PubMed  Google Scholar 

  4. Bandello F, Lattanzio R, Zucchiatti I, Del TC (2013) Pathophysiology and treatment of diabetic retinopathy. Acta Diabetol 50:1–20. https://doi.org/10.1007/s00592-012-0449-3

    Article  CAS  PubMed  Google Scholar 

  5. Kollias AN, Ulbig MW (2010) Diabetic retinopathy: early diagnosis and effective treatment. Dtsch Arztebl Int 107(75–83):84. https://doi.org/10.3238/arztebl.2010.0075

    Google Scholar 

  6. Funk RH (1997) Blood supply of the retina. Ophthalmic Res 29:320–325

    Article  CAS  PubMed  Google Scholar 

  7. Kang MH, Balaratnasingam C, Yu PK, Morgan WH, McAllister IL, Cringle SJ, Yu DY (2011) Morphometric characteristics of central retinal artery and vein endothelium in the normal human optic nerve head. Invest Ophthalmol Vis Sci 52:1359–1367. https://doi.org/10.1167/iovs.10-6366

    Article  PubMed  Google Scholar 

  8. Anderson DR (1969) Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol 82:800–814

    Article  CAS  PubMed  Google Scholar 

  9. Hernandez MR, Igoe F, Neufeld AH (1988) Cell culture of the human lamina cribrosa. Invest Ophthalmol Vis Sci 29:78–89

    CAS  PubMed  Google Scholar 

  10. Tovar-Vidales T, Wordinger RJ, Clark AF (2016) Identification and localization of lamina cribrosa cells in the human optic nerve head. Exp Eye Res 147:94–97. https://doi.org/10.1016/j.exer.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  11. Balaratnasingam C, Kang MH, Yu P, Chan G, Morgan WH, Cringle SJ, Yu DY (2014) Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions. Exp Eye Res 121:11–22. https://doi.org/10.1016/j.exer.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  12. Williamson TH (2007) A “throttle” mechanism in the central retinal vein in the region of the lamina cribrosa. Br J Ophthalmol 91:1190–1193. https://doi.org/10.1136/bjo.2006.102798

    Article  PubMed  Google Scholar 

  13. Dong Y, Lin L, Yan H, Fu Y, Zong Y, Yuan Y, Huang X, Li Y, He H, Gao Q (2016) Shifts in retinal vessel diameter and oxygen saturation in Chinese type 2 diabetes mellitus patients. BMC Ophthalmol 16:43. https://doi.org/10.1186/s12886-016-0217-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gurley SB, Coffman TM (2007) The renin-angiotensin system and diabetic nephropathy. Semin Nephrol 27:144–152. https://doi.org/10.1016/j.semnephrol.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  15. Agarwal P, Jindal A, Saini VK, Jindal S (2014) Advances in diabetic retinopathy. Indian J Endocrinol Metab 18:772–777. https://doi.org/10.4103/2230-8210.140225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Campochiaro PA (2015) Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res 49:67–81. https://doi.org/10.1016/j.preteyeres.2015.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wan TT, Li XF, Sun YM, Li YB, Su Y (2015) Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Biomed Pharmacother 74:145–147. https://doi.org/10.1016/j.biopha.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  18. Moravski CJ, Skinner SL, Stubbs AJ, Sarlos S, Kelly DJ, Cooper ME, Gilbert RE, Wilkinson-Berka JL (2003) The renin-angiotensin system influences ocular endothelial cell proliferation in diabetes: transgenic and interventional studies. Am J Pathol 162:151–160. https://doi.org/10.1016/S0002-9440(10)63806-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukuda A, Wickman LT, Venkatareddy MP, Sato Y, Chowdhury MA, Wang SQ, Shedden KA, Dysko RC, Wiggins JE, Wiggins RC (2012) Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end stage kidney disease. Kidney Int 81:40–55. https://doi.org/10.1038/ki.2011.306

    Article  CAS  PubMed  Google Scholar 

  20. Ola MS, Alhomida AS, Ferrario CM, Ahmad S (2017) Role of tissue Renin-angiotensin system and the Chymase/angiotensin-(1-12) axis in the pathogenesis of diabetic retinopathy. Curr Med Chem. https://doi.org/10.2174/0929867324666170407141955

  21. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611. https://doi.org/10.1210/er.2003-0027

    Article  CAS  PubMed  Google Scholar 

  22. Schrufer TL, Antonetti DA, Sonenberg N, Kimball SR, Gardner TW, Jefferson LS (2010) Ablation of 4E-BP1/2 prevents hyperglycemia-mediated induction of VEGF expression in the rodent retina and in Muller cells in culture. Diabetes 59:2107–2116. https://doi.org/10.2337/db10-0148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE, Et A (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487. https://doi.org/10.1056/NEJM199412013312203

    Article  CAS  PubMed  Google Scholar 

  24. Ferrara N (2005) The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS:209–231

  25. Brozzo MS, Bjelic S, Kisko K, Schleier T, Leppanen VM, Alitalo K, Winkler FK, Ballmer-Hofer K (2012) Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood 119:1781–1788. https://doi.org/10.1182/blood-2011-11-390922

    Article  CAS  PubMed  Google Scholar 

  26. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275:25733–25741. https://doi.org/10.1074/jbc.M002740200

    Article  CAS  PubMed  Google Scholar 

  27. Ling S, Birnbaum Y, Nanhwan MK, Thomas B, Bajaj M, Ye Y (2013) MicroRNA-dependent cross-talk between VEGF and HIF1alpha in the diabetic retina. Cell Signal 25:2840–2847. https://doi.org/10.1016/j.cellsig.2013.08.039

    Article  CAS  PubMed  Google Scholar 

  28. Yan HT, Su GF (2014) Expression and significance of HIF-1 alpha and VEGF in rats with diabetic retinopathy. Asian Pac J Trop Med 7:237–240. https://doi.org/10.1016/S1995-7645(14)60028-6

    Article  CAS  PubMed  Google Scholar 

  29. Zhang M, Gao X, Bai SJ, Ye XM, Zhang J (2014) Effect of pioglitazone on expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in ischemic hindlimb of diabetic rats. Eur Rev Med Pharmacol Sci 18:1307–1314

    CAS  PubMed  Google Scholar 

  30. Berkowitz BA, Grady EM, Khetarpal N, Patel A, Roberts R (2015) Oxidative stress and light-evoked responses of the posterior segment in a mouse model of diabetic retinopathy. Invest Ophthalmol Vis Sci 56:606–615. https://doi.org/10.1167/iovs.14-15687

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sharma S, Saxena S, Srivastav K, Shukla RK, Mishra N, Meyer CH, Kruzliak P, Khanna VK (2015) Nitric oxide and oxidative stress is associated with severity of diabetic retinopathy and retinal structural alterations. Clin Experiment Ophthalmol 43:429–436. https://doi.org/10.1111/ceo.12506

    Article  PubMed  Google Scholar 

  32. Lamoke F, Shaw S, Yuan J, Ananth S, Duncan M, Martin P, Bartoli M (2015) Increased oxidative and Nitrative stress accelerates aging of the retinal vasculature in the diabetic retina. PLoS One 10:e139664. https://doi.org/10.1371/journal.pone.0139664

    Article  Google Scholar 

  33. Castilho A, Aveleira CA, Leal EC, Simoes NF, Fernandes CR, Meirinhos RI, Baptista FI, Ambrosio AF (2012) Heme oxygenase-1 protects retinal endothelial cells against high glucose- and oxidative/nitrosative stress-induced toxicity. PLoS One 7:e42428. https://doi.org/10.1371/journal.pone.0042428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Son E, Jeong J, Lee J, Jung DY, Cho GJ, Choi WS, Lee MS, Kim SH, Kim IK, Suk K (2005) Sequential induction of heme oxygenase-1 and manganese superoxide dismutase protects cultured astrocytes against nitric oxide. Biochem Pharmacol 70:590–597. https://doi.org/10.1016/j.bcp.2005.05.027

    Article  CAS  PubMed  Google Scholar 

  35. Song Y, Huang L, Yu J (2016) Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling. J Neuroimmunol 301:1–6. https://doi.org/10.1016/j.jneuroim.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  36. Ma C, Long H (2016) Protective effect of betulin on cognitive decline in streptozotocin (STZ)-induced diabetic rats. Neurotoxicology 57:104–111. https://doi.org/10.1016/j.neuro.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  37. Hernandez MR (2000) The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 19:297–321

    Article  CAS  PubMed  Google Scholar 

  38. Wallace DM, O'Brien CJ (2016) The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma. Exp Eye Res 142:102–109. https://doi.org/10.1016/j.exer.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  39. Schneider M, Fuchshofer R (2016) The role of astrocytes in optic nerve head fibrosis in glaucoma. Exp Eye Res 142:49–55. https://doi.org/10.1016/j.exer.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  40. Rosenstein JM, Krum JM, Ruhrberg C (2010) VEGF in the nervous system. Organogenesis 6:107–114

    Article  PubMed  PubMed Central  Google Scholar 

  41. Crawford DJ, Roberts MD, Sigal IA (2011) Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism. Exp Eye Res 93:133–140. https://doi.org/10.1016/j.exer.2010.08.004

    Article  Google Scholar 

  42. Gong CY, Yu ZY, Lu B, Yang L, Sheng YC, Fan YM, Ji LL, Wang ZT (2014) Ethanol extract of Dendrobium chrysotoxum Lindl ameliorates diabetic retinopathy and its mechanism. Vasc Pharmacol 62:134–142. https://doi.org/10.1016/j.vph.2014.04.007

    Article  CAS  Google Scholar 

  43. Kriechbaum K, Prager S, Mylonas G, Scholda C, Rainer G, Funk M, Kundi M, Schmidt-Erfurth U (2014) Intravitreal bevacizumab (Avastin) versus triamcinolone (Volon a) for treatment of diabetic macular edema: one-year results. Eye (Lond) 28:9–15. 16. https://doi.org/10.1038/eye.2013.242

    Article  CAS  Google Scholar 

  44. Ip MS, Domalpally A, Sun JK, Ehrlich JS (2015) Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy. Ophthalmology 122:367–374. https://doi.org/10.1016/j.ophtha.2014.08.048

    Article  PubMed  Google Scholar 

  45. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Butt AM, Pugh M, Hubbard P, James G (2004) Functions of optic nerve glia: axoglial signalling in physiology and pathology. Eye (Lond) 18:1110–1121. https://doi.org/10.1038/sj.eye.6701595

    Article  CAS  Google Scholar 

  47. HOGAN MJ, FEENEY L (1963) The ULTRASTRUCTURE of the retinal blood vessels. I. The large vessels. J Ultrastruct Res 39:10–28

    Article  CAS  PubMed  Google Scholar 

  48. Ransom BR, Orkand RK (1996) Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve. Trends Neurosci 19:352–358

    Article  CAS  PubMed  Google Scholar 

  49. Downs JC, Girkin CA (2017) Lamina cribrosa in glaucoma. Curr Opin Ophthalmol 28:113–119. https://doi.org/10.1097/ICU.0000000000000354

    PubMed  Google Scholar 

  50. Morrison JC (2006) Integrins in the optic nerve head: potential roles in glaucomatous optic neuropathy (an American ophthalmological society thesis). Trans Am Ophthalmol Soc 104:453–477

    PubMed  PubMed Central  Google Scholar 

  51. Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9:315–327. https://doi.org/10.1007/s11154-008-9090-4

    Article  CAS  PubMed  Google Scholar 

  52. Payne AJ, Kaja S, Naumchuk Y, Kunjukunju N, Koulen P (2014) Antioxidant drug therapy approaches for Neuroprotection in chronic diseases of the retina. Int J Mol Sci 15:1865–1886. https://doi.org/10.3390/ijms15021865

    Article  PubMed  PubMed Central  Google Scholar 

  53. Amano S, Kaji Y, Oshika T, Oka T, Machinami R, Nagai R, Horiuchi S (2001) Advanced glycation end products in human optic nerve head. Br J Ophthalmol 85:52–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kern TS, Engerman RL (1994) Comparison of retinal lesions in alloxan-diabetic rats and galactose-fed rats. Curr Eye Res 13:863–867

    Article  CAS  PubMed  Google Scholar 

  55. Huang SS, Khosrof SA, Koletsky RJ, Benetz BA, Ernsberger P (1995) Characterization of retinal vascular abnormalities in lean and obese spontaneously hypertensive rats. Clin Exp Pharmacol Physiol Suppl 22:S129–S131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Zhiquan Li taking care of mice, Xiaoxiao Feng and Cheng Li, for developmental review of the manuscript.

Funding

This study was funded by the National Science & Technology Pillar Program of the Twelfth Five-year Plan (2012BAI08B00), the Science and Technology Planning Project of Guangdong Province, China (2015B020211004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianying Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., Lin, L., Zong, Y. et al. Shifts in renin–angiotensin system components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa region of streptozotocin-induced diabetic mice. Graefes Arch Clin Exp Ophthalmol 256, 525–534 (2018). https://doi.org/10.1007/s00417-017-3866-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3866-8

Keywords

Navigation